Spaces:
Running
Running
import os | |
import sys | |
import string | |
from tqdm import tqdm | |
from collections import defaultdict | |
from typing import List, Tuple, Dict | |
def read_lines(fname: str) -> List[str]: | |
""" | |
Reads all lines from an input file and returns them as a list of strings. | |
Args: | |
fname (str): path to the input file to read | |
Returns: | |
List[str]: a list of strings, where each string is a line from the file | |
and returns an empty list if the file does not exist. | |
""" | |
# if path doesnt exist, return empty list | |
if not os.path.exists(fname): | |
return [] | |
with open(fname, "r") as f: | |
lines = f.readlines() | |
return lines | |
def create_txt(out_file: str, lines: List[str]): | |
""" | |
Creates a text file and writes the given list of lines to file. | |
Args: | |
out_file (str): path to the output file to be created. | |
lines (List[str]): a list of strings to be written to the output file. | |
""" | |
add_newline = not "\n" in lines[0] | |
outfile = open("{}".format(out_file), "w", encoding="utf-8") | |
for line in lines: | |
if add_newline: | |
outfile.write(line + "\n") | |
else: | |
outfile.write(line) | |
outfile.close() | |
def pair_dedup_lists(src_list: List[str], tgt_list: List[str]) -> Tuple[List[str], List[str]]: | |
""" | |
Removes duplicates from two lists by pairing their elements and removing duplicates from the pairs. | |
Args: | |
src_list (List[str]): a list of strings from source language data. | |
tgt_list (List[str]): a list of strings from target language data. | |
Returns: | |
Tuple[List[str], List[str]]: a tuple of deduplicated version of "`(src_list, tgt_list)`". | |
""" | |
src_tgt = list(set(zip(src_list, tgt_list))) | |
src_deduped, tgt_deduped = zip(*src_tgt) | |
return src_deduped, tgt_deduped | |
def pair_dedup_files(src_file: str, tgt_file: str): | |
""" | |
Removes duplicates from two files by pairing their lines and removing duplicates from the pairs. | |
Args: | |
src_file (str): path to the source language file to deduplicate. | |
tgt_file (str): path to the target language file to deduplicate. | |
""" | |
src_lines = read_lines(src_file) | |
tgt_lines = read_lines(tgt_file) | |
len_before = len(src_lines) | |
src_dedupped, tgt_dedupped = pair_dedup_lists(src_lines, tgt_lines) | |
len_after = len(src_dedupped) | |
num_duplicates = len_before - len_after | |
print(f"Dropped duplicate pairs in {src_file} Num duplicates -> {num_duplicates}") | |
create_txt(src_file, src_dedupped) | |
create_txt(tgt_file, tgt_dedupped) | |
def strip_and_normalize(line: str) -> str: | |
""" | |
Strips and normalizes a string by lowercasing it, removing spaces and punctuation. | |
Args: | |
line (str): string to strip and normalize. | |
Returns: | |
str: stripped and normalized version of the input string. | |
""" | |
# lowercase line, remove spaces and strip punctuation | |
# one of the fastest way to add an exclusion list and remove that | |
# list of characters from a string | |
# https://towardsdatascience.com/how-to-efficiently-remove-punctuations-from-a-string-899ad4a059fb | |
exclist = string.punctuation + "\u0964" | |
table_ = str.maketrans("", "", exclist) | |
line = line.replace(" ", "").lower() | |
# dont use this method, it is painfully slow | |
# line = "".join([i for i in line if i not in string.punctuation]) | |
line = line.translate(table_) | |
return line | |
def expand_tupled_list(list_of_tuples: List[Tuple[str, str]]) -> Tuple[List[str], List[str]]: | |
""" | |
Expands a list of tuples into two lists by extracting the first and second elements of the tuples. | |
Args: | |
list_of_tuples (List[Tuple[str, str]]): a list of tuples, where each tuple contains two strings. | |
Returns: | |
Tuple[List[str], List[str]]: a tuple containing two lists, the first being the first elements of the | |
tuples in `list_of_tuples` and the second being the second elements. | |
""" | |
# convert list of tuples into two lists | |
# https://stackoverflow.com/questions/8081545/how-to-convert-list-of-tuples-to-multiple-lists | |
# [(en, as), (as, bn), (bn, gu)] - > [en, as, bn], [as, bn, gu] | |
list_a, list_b = map(list, zip(*list_of_tuples)) | |
return list_a, list_b | |
def normalize_and_gather_all_benchmarks(devtest_dir: str) -> Dict[str, Dict[str, List[str]]]: | |
""" | |
Normalizes and gathers all benchmark datasets from a directory into a dictionary. | |
Args: | |
devtest_dir (str): path to the directory containing the subdirectories named after the benchmark datasets, \ | |
where each subdirectory is named in the format "`src_lang-tgt_lang`" and contain four files: `dev.src_lang`, \ | |
`dev.tgt_lang`, `test.src_lang`, and `test.tgt_lang` representing the development and test sets for the language pair. | |
Returns: | |
Dict[str, Dict[str, List[str]]]: a dictionary mapping language pairs (in the format "`src_lang-tgt_lang`") \ | |
to dictionaries containing two lists, the first being the normalized source language lines and the \ | |
second being the normalized target language lines for all benchmark datasets. | |
""" | |
devtest_pairs_normalized = defaultdict(lambda: defaultdict(list)) | |
for benchmark in os.listdir(devtest_dir): | |
print(f"{devtest_dir}/{benchmark}") | |
for pair in tqdm(os.listdir(f"{devtest_dir}/{benchmark}")): | |
src_lang, tgt_lang = pair.split("-") | |
src_dev = read_lines(f"{devtest_dir}/{benchmark}/{pair}/dev.{src_lang}") | |
tgt_dev = read_lines(f"{devtest_dir}/{benchmark}/{pair}/dev.{tgt_lang}") | |
src_test = read_lines(f"{devtest_dir}/{benchmark}/{pair}/test.{src_lang}") | |
tgt_test = read_lines(f"{devtest_dir}/{benchmark}/{pair}/test.{tgt_lang}") | |
# if the tgt_pair data doesnt exist for a particular test set, | |
# it will be an empty list | |
if tgt_test == [] or tgt_dev == []: | |
print(f"{benchmark} does not have {src_lang}-{tgt_lang} data") | |
continue | |
# combine both dev and test sets into one | |
src_devtest = src_dev + src_test | |
tgt_devtest = tgt_dev + tgt_test | |
src_devtest = [strip_and_normalize(line) for line in src_devtest] | |
tgt_devtest = [strip_and_normalize(line) for line in tgt_devtest] | |
devtest_pairs_normalized[pair]["src"].extend(src_devtest) | |
devtest_pairs_normalized[pair]["tgt"].extend(tgt_devtest) | |
# dedup merged benchmark datasets | |
for pair in devtest_pairs_normalized: | |
src_devtest = devtest_pairs_normalized[pair]["src"] | |
tgt_devtest = devtest_pairs_normalized[pair]["tgt"] | |
src_devtest, tgt_devtest = pair_dedup_lists(src_devtest, tgt_devtest) | |
devtest_pairs_normalized[pair]["src"] = src_devtest | |
devtest_pairs_normalized[pair]["tgt"] = tgt_devtest | |
return devtest_pairs_normalized | |
def remove_train_devtest_overlaps(train_dir: str, devtest_dir: str): | |
""" | |
Removes overlapping data between the training and dev/test (benchmark) | |
datasets for all language pairs. | |
Args: | |
train_dir (str): path of the directory containing the training data. | |
devtest_dir (str): path of the directory containing the dev/test data. | |
""" | |
devtest_pairs_normalized = normalize_and_gather_all_benchmarks(devtest_dir) | |
all_src_sentences_normalized = [] | |
for key in devtest_pairs_normalized: | |
all_src_sentences_normalized.extend(devtest_pairs_normalized[key]["src"]) | |
# remove duplicates in all test benchmarks across all lang pair | |
# this might not be the most optimal way but this is a tradeoff for generalizing the code at the moment | |
all_src_sentences_normalized = list(set(all_src_sentences_normalized)) | |
src_overlaps = [] | |
tgt_overlaps = [] | |
pairs = os.listdir(train_dir) | |
for pair in pairs: | |
src_lang, tgt_lang = pair.split("-") | |
new_src_train, new_tgt_train = [], [] | |
src_train = read_lines(f"{train_dir}/{pair}/train.{src_lang}") | |
tgt_train = read_lines(f"{train_dir}/{pair}/train.{tgt_lang}") | |
len_before = len(src_train) | |
if len_before == 0: | |
continue | |
src_train_normalized = [strip_and_normalize(line) for line in src_train] | |
tgt_train_normalized = [strip_and_normalize(line) for line in tgt_train] | |
src_devtest_normalized = all_src_sentences_normalized | |
tgt_devtest_normalized = devtest_pairs_normalized[pair]["tgt"] | |
# compute all src and tgt super strict overlaps for a lang pair | |
overlaps = set(src_train_normalized) & set(src_devtest_normalized) | |
src_overlaps.extend(list(overlaps)) | |
overlaps = set(tgt_train_normalized) & set(tgt_devtest_normalized) | |
tgt_overlaps.extend(list(overlaps)) | |
# dictionaries offer O(1) lookup | |
src_overlaps_dict, tgt_overlaps_dict = {}, {} | |
for line in src_overlaps: | |
src_overlaps_dict[line] = 1 | |
for line in tgt_overlaps: | |
tgt_overlaps_dict[line] = 1 | |
# loop to remove the ovelapped data | |
idx = 0 | |
for src_line_norm, tgt_line_norm in tqdm( | |
zip(src_train_normalized, tgt_train_normalized), total=len_before | |
): | |
if src_overlaps_dict.get(src_line_norm, None): | |
continue | |
if tgt_overlaps_dict.get(tgt_line_norm, None): | |
continue | |
new_src_train.append(src_train[idx]) | |
new_tgt_train.append(tgt_train[idx]) | |
idx += 1 | |
len_after = len(new_src_train) | |
print( | |
f"Detected overlaps between train and devetest for {pair} is {len_before - len_after}" | |
) | |
print(f"saving new files at {train_dir}/{pair}/") | |
create_txt(f"{train_dir}/{pair}/train.{src_lang}", new_src_train) | |
create_txt(f"{train_dir}/{pair}/train.{tgt_lang}", new_tgt_train) | |
if __name__ == "__main__": | |
train_data_dir = sys.argv[1] | |
# benchmarks directory should contains all the test sets | |
devtest_data_dir = sys.argv[2] | |
remove_train_devtest_overlaps(train_data_dir, devtest_data_dir) | |