Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,15 @@ import torch
|
|
3 |
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig, AutoTokenizer
|
4 |
from IndicTransToolkit import IndicProcessor
|
5 |
import speech_recognition as sr
|
|
|
|
|
|
|
6 |
|
7 |
# Constants
|
8 |
BATCH_SIZE = 4
|
9 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
quantization = None
|
|
|
11 |
|
12 |
# ---- IndicTrans2 Model Initialization ----
|
13 |
def initialize_model_and_tokenizer(ckpt_dir, quantization):
|
@@ -83,36 +87,103 @@ indic_en_ckpt_dir = "ai4bharat/indictrans2-indic-en-1B"
|
|
83 |
indic_en_tokenizer, indic_en_model = initialize_model_and_tokenizer(indic_en_ckpt_dir, quantization)
|
84 |
ip = IndicProcessor(inference=True)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# ---- Gradio Function ----
|
87 |
def transcribe_and_translate(audio):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
except sr.UnknownValueError:
|
95 |
-
return "Could not understand audio", ""
|
96 |
-
except sr.RequestError as e:
|
97 |
-
return f"Google API Error: {e}", ""
|
98 |
|
99 |
# Translation
|
100 |
en_sents = [malayalam_text]
|
101 |
src_lang, tgt_lang = "mal_Mlym", "eng_Latn"
|
102 |
translations = batch_translate(en_sents, src_lang, tgt_lang, indic_en_model, indic_en_tokenizer, ip)
|
103 |
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
# ---- Gradio Interface ----
|
107 |
iface = gr.Interface(
|
108 |
fn=transcribe_and_translate,
|
109 |
-
inputs=
|
|
|
|
|
110 |
outputs=[
|
111 |
gr.Textbox(label="Malayalam Transcription"),
|
112 |
-
gr.Textbox(label="English Translation")
|
|
|
113 |
],
|
114 |
title="Malayalam Speech Recognition & Translation",
|
115 |
-
description="Speak in Malayalam → Transcribe using
|
|
|
116 |
)
|
117 |
|
118 |
iface.launch(debug=True, share=True)
|
|
|
3 |
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig, AutoTokenizer
|
4 |
from IndicTransToolkit import IndicProcessor
|
5 |
import speech_recognition as sr
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import os
|
8 |
+
from sentence_transformers import SentenceTransformer, util #Multilingual Similarity
|
9 |
|
10 |
# Constants
|
11 |
BATCH_SIZE = 4
|
12 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
quantization = None
|
14 |
+
MAX_AUDIO_DURATION = 600 # 10 minutes in seconds
|
15 |
|
16 |
# ---- IndicTrans2 Model Initialization ----
|
17 |
def initialize_model_and_tokenizer(ckpt_dir, quantization):
|
|
|
87 |
indic_en_tokenizer, indic_en_model = initialize_model_and_tokenizer(indic_en_ckpt_dir, quantization)
|
88 |
ip = IndicProcessor(inference=True)
|
89 |
|
90 |
+
# Load LaBSE for Multilingual Similarity
|
91 |
+
similarity_model = SentenceTransformer("sentence-transformers/LaBSE")
|
92 |
+
|
93 |
+
# ---- Audio Processing Function ----
|
94 |
+
def convert_audio_to_wav(file_path):
|
95 |
+
""" Convert audio to WAV format for compatibility with SpeechRecognition """
|
96 |
+
audio = AudioSegment.from_file(file_path)
|
97 |
+
wav_path = file_path.replace(file_path.split(".")[-1], "wav")
|
98 |
+
audio.export(wav_path, format="wav")
|
99 |
+
return wav_path
|
100 |
+
|
101 |
+
def transcribe_audio_in_chunks(audio_path, chunk_duration=30):
|
102 |
+
"""Transcribe long audio files in chunks of `chunk_duration` seconds."""
|
103 |
+
recognizer = sr.Recognizer()
|
104 |
+
audio = AudioSegment.from_wav(audio_path)
|
105 |
+
|
106 |
+
# Limit audio duration to MAX_AUDIO_DURATION
|
107 |
+
if len(audio) > MAX_AUDIO_DURATION * 1000:
|
108 |
+
audio = audio[:MAX_AUDIO_DURATION * 1000]
|
109 |
+
|
110 |
+
full_text = []
|
111 |
+
for i in range(0, len(audio), chunk_duration * 1000):
|
112 |
+
chunk = audio[i : i + chunk_duration * 1000]
|
113 |
+
chunk_path = f"temp_chunk.wav"
|
114 |
+
chunk.export(chunk_path, format="wav")
|
115 |
+
|
116 |
+
with sr.AudioFile(chunk_path) as source:
|
117 |
+
audio_data = recognizer.record(source)
|
118 |
+
try:
|
119 |
+
text = recognizer.recognize_google(audio_data, language="ml-IN")
|
120 |
+
full_text.append(text)
|
121 |
+
except sr.UnknownValueError:
|
122 |
+
full_text.append("[Unrecognized Audio]")
|
123 |
+
except sr.RequestError as e:
|
124 |
+
full_text.append(f"[Speech Error: {e}]")
|
125 |
+
|
126 |
+
return " ".join(full_text)
|
127 |
+
|
128 |
+
# Multilingual Semantic Similarity Function (Auto-Reference)
|
129 |
+
def compute_similarity(malayalam_text, english_translation):
|
130 |
+
"""Compares the original Malayalam transcription with back-translated Malayalam text for similarity."""
|
131 |
+
|
132 |
+
if not malayalam_text.strip():
|
133 |
+
print("⚠️ Malayalam transcription is empty!")
|
134 |
+
return "N/A"
|
135 |
+
|
136 |
+
if not english_translation.strip():
|
137 |
+
print("⚠️ English translation is empty!")
|
138 |
+
return "N/A"
|
139 |
+
|
140 |
+
try:
|
141 |
+
# Translate English back to Malayalam for comparison
|
142 |
+
back_translated = batch_translate([english_translation], "eng_Latn", "mal_Mlym", indic_en_model, indic_en_tokenizer, ip)[0]
|
143 |
+
|
144 |
+
# Encode Malayalam transcription & Back-Translated Malayalam
|
145 |
+
embeddings = similarity_model.encode([malayalam_text, back_translated])
|
146 |
+
|
147 |
+
# Compute cosine similarity
|
148 |
+
similarity_score = util.cos_sim(embeddings[0], embeddings[1]).item()
|
149 |
+
return round(similarity_score * 100, 2) # Convert to percentage
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Error in similarity computation: {e}")
|
152 |
+
return "N/A"
|
153 |
+
|
154 |
# ---- Gradio Function ----
|
155 |
def transcribe_and_translate(audio):
|
156 |
+
# Convert to WAV if necessary
|
157 |
+
if not audio.endswith(".wav"):
|
158 |
+
audio = convert_audio_to_wav(audio)
|
159 |
+
|
160 |
+
# Transcribe audio in chunks
|
161 |
+
malayalam_text = transcribe_audio_in_chunks(audio)
|
|
|
|
|
|
|
|
|
162 |
|
163 |
# Translation
|
164 |
en_sents = [malayalam_text]
|
165 |
src_lang, tgt_lang = "mal_Mlym", "eng_Latn"
|
166 |
translations = batch_translate(en_sents, src_lang, tgt_lang, indic_en_model, indic_en_tokenizer, ip)
|
167 |
|
168 |
+
# Compute Multilingual Semantic Similarity (Malayalam → English → Malayalam)
|
169 |
+
similarity_score = compute_similarity(malayalam_text, translations[0])
|
170 |
+
|
171 |
+
return malayalam_text, translations[0], f"{similarity_score}%" # Similarity as %
|
172 |
|
173 |
# ---- Gradio Interface ----
|
174 |
iface = gr.Interface(
|
175 |
fn=transcribe_and_translate,
|
176 |
+
inputs=[
|
177 |
+
gr.Audio(sources=["microphone", "upload"], type="filepath"), # Only audio input
|
178 |
+
],
|
179 |
outputs=[
|
180 |
gr.Textbox(label="Malayalam Transcription"),
|
181 |
+
gr.Textbox(label="English Translation"),
|
182 |
+
gr.Textbox(label="Semantic Similarity (%)"), # Automatically computed
|
183 |
],
|
184 |
title="Malayalam Speech Recognition & Translation",
|
185 |
+
description="Speak in Malayalam → Transcribe using Speech Recognition → Translate to English & Measure Accuracy.",
|
186 |
+
allow_flagging="never"
|
187 |
)
|
188 |
|
189 |
iface.launch(debug=True, share=True)
|