INDIC_NLP_LIB_HOME = "indic_nlp_library" INDIC_NLP_RESOURCES = "indic_nlp_resources" import sys sys.path.append(r"{}".format(INDIC_NLP_LIB_HOME)) from indicnlp import common common.set_resources_path(INDIC_NLP_RESOURCES) from indicnlp import loader loader.load() from sacremoses import MosesPunctNormalizer from sacremoses import MosesTokenizer from sacremoses import MosesDetokenizer from collections import defaultdict from tqdm import tqdm from joblib import Parallel, delayed from indicnlp.tokenize import indic_tokenize from indicnlp.tokenize import indic_detokenize from indicnlp.normalize import indic_normalize from indicnlp.transliterate import unicode_transliterate import re from typing import Union from flores_codes_map_indic import flores_codes en_tok = MosesTokenizer(lang="en") en_normalizer = MosesPunctNormalizer() def preprocess_line( line: str, normalizer: Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory], lang: str, transliterate: bool = False, remove_tag: bool = True ) -> str: """ Preprocess a line of text by normalizing, tokenization, and possibly transliterating it. Args: line (str): the line of text to preprocess. normalizer (Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory]): an object that performs normalization on the text. lang (str): the language of the line of text transliterate (bool, optional): whether to transliterate the line of text to devanagari (default: False). remove_tag (bool, optional): whether to remove the do not translate tags (`` and ``) from the line of text (default: True). Returns: str: preprocessed line of text. """ iso_lang = flores_codes[lang] pattern = r'(.*?)' raw_matches = re.findall(pattern, line) if iso_lang == "en": processed_line = " ".join(en_tok.tokenize(en_normalizer.normalize(line.strip()), escape=False)) elif transliterate: # transliterates from the any specific language to devanagari # which is why we specify lang2_code as "hi". # line = indic_detokenize.trivial_detokenize(line.strip(), lang) processed_line = unicode_transliterate.UnicodeIndicTransliterator.transliterate( " ".join(indic_tokenize.trivial_tokenize(normalizer.normalize(line.strip()), iso_lang)), iso_lang, "hi", ).replace(" ् ", "्") else: # we only need to transliterate for joint training processed_line = " ".join( indic_tokenize.trivial_tokenize(normalizer.normalize(line.strip()), iso_lang) ) processed_line = processed_line.replace("< dnt >", "") processed_line = processed_line.replace("< / dnt >", "") processed_line_matches = re.findall(pattern, processed_line) for raw_match, processed_line_match in zip(raw_matches, processed_line_matches): processed_line = processed_line.replace(processed_line_match, raw_match) if remove_tag: processed_line = re.sub("\s+", " ", processed_line.replace("", " ")).strip() processed_line = re.sub("\s+", " ", processed_line.replace("", " ")).strip() return processed_line def preprocess( infname: str, outfname: str, lang: str, transliterate: bool = False, remove_tag: bool= True ) -> int: """ Preprocess the text in the input file by normalizing, tokenizing and script conversation and write the output to a new file. Args: infname (str): path of the input file. outfname (str): path of the output file. lang (str): language of the text in the input file. transliterate (bool, optional): whether to transliterate the text in input file to devanagari (default: False). remove_tag (bool, optional): whether to remove the do not translate tags (`` and ``) from the text in input file (default: True). Returns: int: number of sentences in the input file """ iso_lang = flores_codes[lang] n = 0 num_lines = sum(1 for line in open(infname, "r")) if iso_lang == "en": with open(infname, "r", encoding="utf-8") as infile, open( outfname, "w", encoding="utf-8" ) as outfile: out_lines = Parallel(n_jobs=-1, backend="multiprocessing")( delayed(preprocess_line)(line, None, lang, transliterate, remove_tag) for line in tqdm(infile, total=num_lines) ) for line in out_lines: outfile.write(line + "\n") n += 1 else: normfactory = indic_normalize.IndicNormalizerFactory() normalizer = normfactory.get_normalizer(iso_lang) # reading with open(infname, "r", encoding="utf-8") as infile, open( outfname, "w", encoding="utf-8" ) as outfile: out_lines = Parallel(n_jobs=-1, backend="multiprocessing")( delayed(preprocess_line)(line, normalizer, lang, transliterate, remove_tag) for line in tqdm(infile, total=num_lines) ) for line in out_lines: outfile.write(line + "\n") n += 1 return n if __name__ == "__main__": infname = sys.argv[1] outfname = sys.argv[2] lang = sys.argv[3] transliterate = sys.argv[4] remove_tag = sys.argv[5] if transliterate.lower() == "true": transliterate = True else: transliterate = False if remove_tag.lower() == "true": remove_tag = True else: remove_tag = False print(preprocess(infname, outfname, lang, transliterate, remove_tag))