import os import sys import string from tqdm import tqdm from collections import defaultdict from typing import List, Tuple, Dict def read_lines(fname: str) -> List[str]: """ Reads all lines from an input file and returns them as a list of strings. Args: fname (str): path to the input file to read Returns: List[str]: a list of strings, where each string is a line from the file and returns an empty list if the file does not exist. """ # if path doesnt exist, return empty list if not os.path.exists(fname): return [] with open(fname, "r") as f: lines = f.readlines() return lines def create_txt(out_file: str, lines: List[str]): """ Creates a text file and writes the given list of lines to file. Args: out_file (str): path to the output file to be created. lines (List[str]): a list of strings to be written to the output file. """ add_newline = not "\n" in lines[0] outfile = open("{}".format(out_file), "w", encoding="utf-8") for line in lines: if add_newline: outfile.write(line + "\n") else: outfile.write(line) outfile.close() def pair_dedup_lists(src_list: List[str], tgt_list: List[str]) -> Tuple[List[str], List[str]]: """ Removes duplicates from two lists by pairing their elements and removing duplicates from the pairs. Args: src_list (List[str]): a list of strings from source language data. tgt_list (List[str]): a list of strings from target language data. Returns: Tuple[List[str], List[str]]: a tuple of deduplicated version of "`(src_list, tgt_list)`". """ src_tgt = list(set(zip(src_list, tgt_list))) src_deduped, tgt_deduped = zip(*src_tgt) return src_deduped, tgt_deduped def pair_dedup_files(src_file: str, tgt_file: str): """ Removes duplicates from two files by pairing their lines and removing duplicates from the pairs. Args: src_file (str): path to the source language file to deduplicate. tgt_file (str): path to the target language file to deduplicate. """ src_lines = read_lines(src_file) tgt_lines = read_lines(tgt_file) len_before = len(src_lines) src_dedupped, tgt_dedupped = pair_dedup_lists(src_lines, tgt_lines) len_after = len(src_dedupped) num_duplicates = len_before - len_after print(f"Dropped duplicate pairs in {src_file} Num duplicates -> {num_duplicates}") create_txt(src_file, src_dedupped) create_txt(tgt_file, tgt_dedupped) def strip_and_normalize(line: str) -> str: """ Strips and normalizes a string by lowercasing it, removing spaces and punctuation. Args: line (str): string to strip and normalize. Returns: str: stripped and normalized version of the input string. """ # lowercase line, remove spaces and strip punctuation # one of the fastest way to add an exclusion list and remove that # list of characters from a string # https://towardsdatascience.com/how-to-efficiently-remove-punctuations-from-a-string-899ad4a059fb exclist = string.punctuation + "\u0964" table_ = str.maketrans("", "", exclist) line = line.replace(" ", "").lower() # dont use this method, it is painfully slow # line = "".join([i for i in line if i not in string.punctuation]) line = line.translate(table_) return line def expand_tupled_list(list_of_tuples: List[Tuple[str, str]]) -> Tuple[List[str], List[str]]: """ Expands a list of tuples into two lists by extracting the first and second elements of the tuples. Args: list_of_tuples (List[Tuple[str, str]]): a list of tuples, where each tuple contains two strings. Returns: Tuple[List[str], List[str]]: a tuple containing two lists, the first being the first elements of the tuples in `list_of_tuples` and the second being the second elements. """ # convert list of tuples into two lists # https://stackoverflow.com/questions/8081545/how-to-convert-list-of-tuples-to-multiple-lists # [(en, as), (as, bn), (bn, gu)] - > [en, as, bn], [as, bn, gu] list_a, list_b = map(list, zip(*list_of_tuples)) return list_a, list_b def normalize_and_gather_all_benchmarks(devtest_dir: str) -> Dict[str, Dict[str, List[str]]]: """ Normalizes and gathers all benchmark datasets from a directory into a dictionary. Args: devtest_dir (str): path to the directory containing the subdirectories named after the benchmark datasets, \ where each subdirectory is named in the format "`src_lang-tgt_lang`" and contain four files: `dev.src_lang`, \ `dev.tgt_lang`, `test.src_lang`, and `test.tgt_lang` representing the development and test sets for the language pair. Returns: Dict[str, Dict[str, List[str]]]: a dictionary mapping language pairs (in the format "`src_lang-tgt_lang`") \ to dictionaries containing two lists, the first being the normalized source language lines and the \ second being the normalized target language lines for all benchmark datasets. """ devtest_pairs_normalized = defaultdict(lambda: defaultdict(list)) for benchmark in os.listdir(devtest_dir): print(f"{devtest_dir}/{benchmark}") for pair in tqdm(os.listdir(f"{devtest_dir}/{benchmark}")): src_lang, tgt_lang = pair.split("-") src_dev = read_lines(f"{devtest_dir}/{benchmark}/{pair}/dev.{src_lang}") tgt_dev = read_lines(f"{devtest_dir}/{benchmark}/{pair}/dev.{tgt_lang}") src_test = read_lines(f"{devtest_dir}/{benchmark}/{pair}/test.{src_lang}") tgt_test = read_lines(f"{devtest_dir}/{benchmark}/{pair}/test.{tgt_lang}") # if the tgt_pair data doesnt exist for a particular test set, # it will be an empty list if tgt_test == [] or tgt_dev == []: print(f"{benchmark} does not have {src_lang}-{tgt_lang} data") continue # combine both dev and test sets into one src_devtest = src_dev + src_test tgt_devtest = tgt_dev + tgt_test src_devtest = [strip_and_normalize(line) for line in src_devtest] tgt_devtest = [strip_and_normalize(line) for line in tgt_devtest] devtest_pairs_normalized[pair]["src"].extend(src_devtest) devtest_pairs_normalized[pair]["tgt"].extend(tgt_devtest) # dedup merged benchmark datasets for pair in devtest_pairs_normalized: src_devtest = devtest_pairs_normalized[pair]["src"] tgt_devtest = devtest_pairs_normalized[pair]["tgt"] src_devtest, tgt_devtest = pair_dedup_lists(src_devtest, tgt_devtest) devtest_pairs_normalized[pair]["src"] = src_devtest devtest_pairs_normalized[pair]["tgt"] = tgt_devtest return devtest_pairs_normalized def remove_train_devtest_overlaps(train_dir: str, devtest_dir: str): """ Removes overlapping data between the training and dev/test (benchmark) datasets for all language pairs. Args: train_dir (str): path of the directory containing the training data. devtest_dir (str): path of the directory containing the dev/test data. """ devtest_pairs_normalized = normalize_and_gather_all_benchmarks(devtest_dir) all_src_sentences_normalized = [] for key in devtest_pairs_normalized: all_src_sentences_normalized.extend(devtest_pairs_normalized[key]["src"]) # remove duplicates in all test benchmarks across all lang pair # this might not be the most optimal way but this is a tradeoff for generalizing the code at the moment all_src_sentences_normalized = list(set(all_src_sentences_normalized)) src_overlaps = [] tgt_overlaps = [] pairs = os.listdir(train_dir) for pair in pairs: src_lang, tgt_lang = pair.split("-") new_src_train, new_tgt_train = [], [] src_train = read_lines(f"{train_dir}/{pair}/train.{src_lang}") tgt_train = read_lines(f"{train_dir}/{pair}/train.{tgt_lang}") len_before = len(src_train) if len_before == 0: continue src_train_normalized = [strip_and_normalize(line) for line in src_train] tgt_train_normalized = [strip_and_normalize(line) for line in tgt_train] src_devtest_normalized = all_src_sentences_normalized tgt_devtest_normalized = devtest_pairs_normalized[pair]["tgt"] # compute all src and tgt super strict overlaps for a lang pair overlaps = set(src_train_normalized) & set(src_devtest_normalized) src_overlaps.extend(list(overlaps)) overlaps = set(tgt_train_normalized) & set(tgt_devtest_normalized) tgt_overlaps.extend(list(overlaps)) # dictionaries offer O(1) lookup src_overlaps_dict, tgt_overlaps_dict = {}, {} for line in src_overlaps: src_overlaps_dict[line] = 1 for line in tgt_overlaps: tgt_overlaps_dict[line] = 1 # loop to remove the ovelapped data idx = 0 for src_line_norm, tgt_line_norm in tqdm( zip(src_train_normalized, tgt_train_normalized), total=len_before ): if src_overlaps_dict.get(src_line_norm, None): continue if tgt_overlaps_dict.get(tgt_line_norm, None): continue new_src_train.append(src_train[idx]) new_tgt_train.append(tgt_train[idx]) idx += 1 len_after = len(new_src_train) print( f"Detected overlaps between train and devetest for {pair} is {len_before - len_after}" ) print(f"saving new files at {train_dir}/{pair}/") create_txt(f"{train_dir}/{pair}/train.{src_lang}", new_src_train) create_txt(f"{train_dir}/{pair}/train.{tgt_lang}", new_tgt_train) if __name__ == "__main__": train_data_dir = sys.argv[1] # benchmarks directory should contains all the test sets devtest_data_dir = sys.argv[2] remove_train_devtest_overlaps(train_data_dir, devtest_data_dir)