File size: 8,880 Bytes
396dfd7
 
f7b89d2
396dfd7
f7b89d2
228207a
f7b89d2
228207a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b89d2
 
 
228207a
f7b89d2
228207a
 
 
 
 
 
 
 
 
f7b89d2
 
 
 
396dfd7
f7b89d2
 
 
396dfd7
 
 
 
 
 
 
 
 
 
 
 
f7b89d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228207a
 
 
f7b89d2
 
 
 
 
 
228207a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b931cb1
228207a
 
 
 
b931cb1
 
228207a
b931cb1
f7b89d2
 
 
 
 
 
 
 
 
228207a
f7b89d2
 
 
b931cb1
 
 
 
 
f7b89d2
 
 
 
 
 
 
 
 
 
396dfd7
f7b89d2
 
 
 
 
 
587c0f6
 
 
100cbd5
587c0f6
 
 
f7b89d2
587c0f6
 
 
 
 
 
 
f7b89d2
 
 
 
 
 
396dfd7
f7b89d2
 
 
 
 
 
 
 
 
 
d024d6f
f7b89d2
 
 
396dfd7
b931cb1
f7b89d2
396dfd7
 
f7b89d2
 
 
 
 
 
 
396dfd7
f7b89d2
396dfd7
 
f7b89d2
 
 
396dfd7
 
f7b89d2
 
 
396dfd7
f7b89d2
396dfd7
 
f7b89d2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import json
import os

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, get_collection
from huggingface_hub.repocard import metadata_load
from typing import Dict


def get_datasets_nickname() -> Dict: 

    datasets_nickname = {}

    collection = get_collection("vidore/vidore-benchmark-667173f98e70a1c0fa4db00d")

    collection_items = collection.items

    for item in collection_items:
        dataset_name = item.item_id

        if 'arxivqa' in dataset_name:
            datasets_nickname[dataset_name] = 'ArxivQA'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'ArxivQA'
            datasets_nickname[dataset_name + '_captioning'] = 'ArxivQA'
        
        elif 'docvqa' in dataset_name:
            datasets_nickname[dataset_name] = 'DocVQA'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'DocVQA'
            datasets_nickname[dataset_name + '_captioning'] = 'DocVQA'

        elif 'infovqa' in dataset_name:
            datasets_nickname[dataset_name] = 'InfoVQA'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'InfoVQA'
            datasets_nickname[dataset_name + '_captioning'] = 'InfoVQA'
        
        elif 'tabfquad' in dataset_name:
            datasets_nickname[dataset_name] = 'TabFQuad'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'TabFQuad'
            datasets_nickname[dataset_name + '_captioning'] = 'TabFQuad'
        
        elif 'tatdqa' in dataset_name:
            datasets_nickname[dataset_name] = 'TATDQA'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'TATDQA'
            datasets_nickname[dataset_name + '_captioning'] = 'TATDQA'
        
        elif 'shiftproject' in dataset_name:
            datasets_nickname[dataset_name] = 'ShiftProject'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'ShiftProject'
            datasets_nickname[dataset_name + '_captioning'] = 'ShiftProject'
        
        elif 'artificial_intelligence' in dataset_name:
            datasets_nickname[dataset_name] = 'Artificial Intelligence'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
            datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
        
        elif 'energy' in dataset_name:
            datasets_nickname[dataset_name] = 'Energy'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
            datasets_nickname[dataset_name + '_captioning'] = 'Energy'
        
        elif 'government_reports' in dataset_name:
            datasets_nickname[dataset_name] = 'Government Reports'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
            datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'

        elif 'healthcare' in dataset_name:
            datasets_nickname[dataset_name] = 'Healthcare'
            datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
            datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'

    return datasets_nickname


def make_clickable_model(model_name, link=None):
    
    if link is None:
        desanitized_model_name = model_name.replace("_", "/")
        
        if '/captioning' in desanitized_model_name:
            desanitized_model_name = desanitized_model_name.replace('/captioning', '')
        if '/ocr' in desanitized_model_name:
            desanitized_model_name = desanitized_model_name.replace('/ocr', '')

        link = "https://huggingface.co/" + desanitized_model_name
        
    # Remove user from model name
    # return (
    #     f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
    # )
    return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'


def add_rank(df):
    cols_to_rank = [
        col
        for col in df.columns
        if col
        not in [
            "Model",
            "Model Size (Million Parameters)",
            "Memory Usage (GB, fp32)",
            "Embedding Dimensions",
            "Max Tokens",
        ]
    ]
    if len(cols_to_rank) == 1:
        df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
    else:
        df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
        df.sort_values("Average", ascending=False, inplace=True)
    df.insert(0, "Rank", list(range(1, len(df) + 1)))
    df = df.round(2)
    # Fill NaN after averaging
    df.fillna("", inplace=True)
    return df


def get_vidore_data():
    api = HfApi()

    # local cache path
    model_infos_path = "model_infos.json"
    metric = "ndcg_at_5"


    MODEL_INFOS = {}
    if os.path.exists(model_infos_path):
        with open(model_infos_path) as f:
            MODEL_INFOS = json.load(f)

    models = api.list_models(filter="vidore")
    repositories = [model.modelId for model in models]  

    datasets_nickname = get_datasets_nickname()
    for repo_id in repositories:
        files = [f for f in api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
        if len(files) == 0:
            continue
        else :
            for file in files:
                model_name = file.split('_metrics.json')[0]

                if model_name not in MODEL_INFOS:
                    readme_path = hf_hub_download(repo_id, filename="README.md")
                    meta = metadata_load(readme_path)
                    try:
                        result_path = hf_hub_download(repo_id, filename= file)

                        with open(result_path) as f:
                            results = json.load(f)

                        for dataset in results:
                            results[dataset] = {key: value for key, value in results[dataset].items() if metric in key}

                        MODEL_INFOS[model_name] = {"meta":meta, "results": results}
                    except Exception as e:  
                        print(f"Error loading {model_name} - {e}")
                        continue
    
    model_res = {}
    df = None
    if len(MODEL_INFOS) > 0:
        for model in MODEL_INFOS.keys():
            res = MODEL_INFOS[model]["results"]
            dataset_res = {}
            for dataset in res.keys():
                if "validation_set" == dataset:
                    continue
                dataset_res[datasets_nickname[dataset]] = res[dataset][metric]
            model_res[model] = dataset_res

        df = pd.DataFrame(model_res).T
        
    #save model_infos
    with open(model_infos_path, "w") as f:
        json.dump(MODEL_INFOS, f)
    
    return df


def add_rank_and_format(df):
    df = df.reset_index()
    df = df.rename(columns={"index": "Model"})
    df = add_rank(df)
    df["Model"] = df["Model"].apply(make_clickable_model)
    return df


# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
# 4. Prevent checkbox groups from taking up too much space

css = """
table > thead {
    white-space: normal
}

table {
    --cell-width-1: 250px
}

table > tbody > tr > td:nth-child(2) > div {
    overflow-x: auto
}

.filter-checkbox-group {
    max-width: max-content;
}
"""


def get_refresh_function():
    def _refresh():
        data_task_category = get_vidore_data()
        return add_rank_and_format(data_task_category)

    return _refresh

data = get_vidore_data()
data = add_rank_and_format(data)

NUM_DATASETS = len(data.columns) - 3
NUM_SCORES = len(data) * NUM_DATASETS
NUM_MODELS = len(data)

with gr.Blocks(css=css) as block:
    gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark πŸ“šπŸ”")
    gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")

    gr.Markdown(
        """
    Visual Document Retrieval Benchmark leaderboard. To submit, refer to the <a href="https://github.com/tonywu71/vidore-benchmark/" target="_blank" style="text-decoration: underline">ViDoRe GitHub repository</a>.  Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
    """
    )

    with gr.Row():
        datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
        dataframe = gr.Dataframe(data, datatype=datatype, type="pandas", height=500)

    with gr.Row():
        refresh_button = gr.Button("Refresh")
        refresh_button.click(get_refresh_function(), inputs=None, outputs=dataframe, concurrency_limit=20)

    gr.Markdown(
        f"""
    - **Total Datasets**: {NUM_DATASETS}
    - **Total Scores**: {NUM_SCORES}
    - **Total Models**: {NUM_MODELS}
    """
        + r"""
    Please consider citing:

    ```bibtex
    INSERT LATER
    ```
    """
    )


if __name__ == "__main__":
    block.queue(max_size=10).launch(debug=True)