manu's picture
Change names and tab order
d5a3f7a verified
import gradio as gr
from app.utils import add_rank_and_format, filter_models, get_refresh_function
from data.model_handler import ModelHandler
METRICS = [
"ndcg_at_1",
"ndcg_at_5",
"ndcg_at_10",
"ndcg_at_100",
"recall_at_1",
"recall_at_5",
"recall_at_10",
"recall_at_100",
]
def main():
model_handler = ModelHandler()
initial_metric = "ndcg_at_5"
model_handler.get_vidore_data(initial_metric)
data_benchmark_1 = model_handler.compute_averages(initial_metric, benchmark_version=1)
data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
data_benchmark_2 = model_handler.compute_averages(initial_metric, benchmark_version=2)
data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
NUM_DATASETS_1 = len(data_benchmark_1.columns) - 3
NUM_SCORES_1 = len(data_benchmark_1) * NUM_DATASETS_1
NUM_MODELS_1 = len(data_benchmark_1)
NUM_DATASETS_2 = len(data_benchmark_2.columns) - 3
NUM_SCORES_2 = len(data_benchmark_2) * NUM_DATASETS_2
NUM_MODELS_2 = len(data_benchmark_2)
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
#markdown size
.markdown {
font-size: 1rem;
}
"""
with gr.Blocks(css=css) as block:
with gr.Tabs():
with gr.TabItem("πŸ† ViDoRe V1"):
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 πŸ“šπŸ”")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
datasets_columns_1 = list(data_benchmark_1.columns[3:])
with gr.Row():
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox_1 = gr.Textbox(
placeholder="πŸ” Search Models... [press enter]",
label="Filter Models by Name",
)
column_checkboxes_1 = gr.CheckboxGroup(
choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
)
with gr.Row():
datatype_1 = ["number", "markdown"] + ["number"] * (NUM_DATASETS_1 + 1)
dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
def update_data_1(metric, search_term, selected_columns):
model_handler.get_vidore_data(metric)
data = model_handler.compute_averages(metric, benchmark_version=1)
data = add_rank_and_format(data, benchmark_version=1)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Average"] + selected_columns]
return data
with gr.Row():
refresh_button_1 = gr.Button("Refresh")
refresh_button_1.click(
get_refresh_function(model_handler, benchmark_version=1),
inputs=[metric_dropdown_1],
outputs=dataframe_1,
concurrency_limit=20,
)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown_1.change(
get_refresh_function(model_handler, benchmark_version=1),
inputs=[metric_dropdown_1],
outputs=dataframe_1,
)
research_textbox_1.submit(
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
outputs=dataframe_1,
)
column_checkboxes_1.change(
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
outputs=dataframe_1,
)
gr.Markdown(
f"""
- **Total Datasets**: {NUM_DATASETS_1}
- **Total Scores**: {NUM_SCORES_1}
- **Total Models**: {NUM_MODELS_1}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("πŸ† ViDoRe V2"):
gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark πŸ“šπŸ”")
gr.Markdown("### A harder dataset benchmark for visual document retrieval πŸ‘€")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
"""
)
datasets_columns_2 = list(data_benchmark_2.columns[3:])
with gr.Row():
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox_2 = gr.Textbox(
placeholder="πŸ” Search Models... [press enter]",
label="Filter Models by Name",
)
column_checkboxes_2 = gr.CheckboxGroup(
choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
)
with gr.Row():
datatype_2 = ["number", "markdown"] + ["number"] * (NUM_DATASETS_2 + 1)
dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
def update_data_2(metric, search_term, selected_columns):
model_handler.get_vidore_data(metric)
data = model_handler.compute_averages(metric, benchmark_version=2)
data = add_rank_and_format(data, benchmark_version=2)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Average"] + selected_columns]
return data
with gr.Row():
refresh_button_2 = gr.Button("Refresh")
refresh_button_2.click(
get_refresh_function(model_handler, benchmark_version=2),
inputs=[metric_dropdown_2],
outputs=dataframe_2,
concurrency_limit=20,
)
with gr.Row():
gr.Markdown(
"""
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
Those numbers are not numbers obtained from the organisations that released those models.
"""
)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown_2.change(
get_refresh_function(model_handler, benchmark_version=2),
inputs=[metric_dropdown_2],
outputs=dataframe_2,
)
research_textbox_2.submit(
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
outputs=dataframe_2,
)
column_checkboxes_2.change(
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
outputs=dataframe_2,
)
gr.Markdown(
f"""
- **Total Datasets**: {NUM_DATASETS_2}
- **Total Scores**: {NUM_SCORES_2}
- **Total Models**: {NUM_MODELS_2}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("πŸ“š Submit your model"):
gr.Markdown("# How to Submit a New Model to the Leaderboard")
gr.Markdown(
"""
To submit a new model to the ViDoRe leaderboard, follow these steps:
1. **Evaluate your model**:
- Follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/)
2. **Format your submission file**:
- The submission file should automatically be generated, and named `results.json` with the
following structure:
```json
{
"dataset_name_1": {
"metric_1": score_1,
"metric_2": score_2,
...
},
"dataset_name_2": {
"metric_1": score_1,
"metric_2": score_2,
...
},
}
```
- The dataset names should be the same as the ViDoRe and ViDoRe 2 dataset names listed in the following
collections: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and [ViDoRe Benchmark 2](vidore/vidore-benchmark-v2-dev-67ae03e3924e85b36e7f53b0).
3. **Submit your model**:
- Create a public HuggingFace model repository with your model.
- Add the tag `vidore` to your model in the metadata of the model card and place the
`results.json` file at the root.
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
gets rebooted, it will appear on startup.
Note: For proper hyperlink redirection, please ensure that your model repository name is in
kebab-case, e.g. `my-model-name`.
"""
)
block.queue(max_size=10).launch(debug=True)
if __name__ == "__main__":
main()