Spaces:
Running
Running
Hugues Sibille
commited on
Commit
•
187990b
1
Parent(s):
b931cb1
refactor : break app.py in different files
Browse files- .gitignore +3 -0
- app/__init__.py +1 -0
- app/utils.py +31 -0
- data/__init__.py +1 -0
- data/dataset_handler.py +64 -0
- data/model_handler.py +94 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
*.json
|
3 |
+
*.pyc
|
app/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
app/utils.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data.model_handler import ModelHandler
|
2 |
+
|
3 |
+
def make_clickable_model(model_name, link=None):
|
4 |
+
if link is None:
|
5 |
+
desanitized_model_name = model_name.replace("_", "/")
|
6 |
+
|
7 |
+
if '/captioning' in desanitized_model_name:
|
8 |
+
desanitized_model_name = desanitized_model_name.replace('/captioning', '')
|
9 |
+
if '/ocr' in desanitized_model_name:
|
10 |
+
desanitized_model_name = desanitized_model_name.replace('/ocr', '')
|
11 |
+
|
12 |
+
link = "https://huggingface.co/" + desanitized_model_name
|
13 |
+
|
14 |
+
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
15 |
+
|
16 |
+
|
17 |
+
def add_rank_and_format(df):
|
18 |
+
df = df.reset_index()
|
19 |
+
df = df.rename(columns={"index": "Model"})
|
20 |
+
df = ModelHandler.add_rank(df)
|
21 |
+
df["Model"] = df["Model"].apply(make_clickable_model)
|
22 |
+
return df
|
23 |
+
|
24 |
+
def get_refresh_function():
|
25 |
+
def _refresh(metric):
|
26 |
+
model_handler = ModelHandler()
|
27 |
+
data_task_category = model_handler.get_vidore_data(metric)
|
28 |
+
df = add_rank_and_format(data_task_category)
|
29 |
+
return df
|
30 |
+
|
31 |
+
return _refresh
|
data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
data/dataset_handler.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
from huggingface_hub import get_collection
|
3 |
+
|
4 |
+
|
5 |
+
def get_datasets_nickname() -> Dict:
|
6 |
+
datasets_nickname = {}
|
7 |
+
|
8 |
+
collection = get_collection("vidore/vidore-benchmark-667173f98e70a1c0fa4db00d")
|
9 |
+
collection_items = collection.items
|
10 |
+
|
11 |
+
for item in collection_items:
|
12 |
+
dataset_name = item.item_id
|
13 |
+
|
14 |
+
if 'arxivqa' in dataset_name:
|
15 |
+
datasets_nickname[dataset_name] = 'ArxivQA'
|
16 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ArxivQA'
|
17 |
+
datasets_nickname[dataset_name + '_captioning'] = 'ArxivQA'
|
18 |
+
|
19 |
+
elif 'docvqa' in dataset_name:
|
20 |
+
datasets_nickname[dataset_name] = 'DocVQA'
|
21 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'DocVQA'
|
22 |
+
datasets_nickname[dataset_name + '_captioning'] = 'DocVQA'
|
23 |
+
|
24 |
+
elif 'infovqa' in dataset_name:
|
25 |
+
datasets_nickname[dataset_name] = 'InfoVQA'
|
26 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'InfoVQA'
|
27 |
+
datasets_nickname[dataset_name + '_captioning'] = 'InfoVQA'
|
28 |
+
|
29 |
+
elif 'tabfquad' in dataset_name:
|
30 |
+
datasets_nickname[dataset_name] = 'TabFQuad'
|
31 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TabFQuad'
|
32 |
+
datasets_nickname[dataset_name + '_captioning'] = 'TabFQuad'
|
33 |
+
|
34 |
+
elif 'tatdqa' in dataset_name:
|
35 |
+
datasets_nickname[dataset_name] = 'TATDQA'
|
36 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TATDQA'
|
37 |
+
datasets_nickname[dataset_name + '_captioning'] = 'TATDQA'
|
38 |
+
|
39 |
+
elif 'shiftproject' in dataset_name:
|
40 |
+
datasets_nickname[dataset_name] = 'ShiftProject'
|
41 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ShiftProject'
|
42 |
+
datasets_nickname[dataset_name + '_captioning'] = 'ShiftProject'
|
43 |
+
|
44 |
+
elif 'artificial_intelligence' in dataset_name:
|
45 |
+
datasets_nickname[dataset_name] = 'Artificial Intelligence'
|
46 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
|
47 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
|
48 |
+
|
49 |
+
elif 'energy' in dataset_name:
|
50 |
+
datasets_nickname[dataset_name] = 'Energy'
|
51 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
|
52 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Energy'
|
53 |
+
|
54 |
+
elif 'government_reports' in dataset_name:
|
55 |
+
datasets_nickname[dataset_name] = 'Government Reports'
|
56 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
|
57 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'
|
58 |
+
|
59 |
+
elif 'healthcare' in dataset_name:
|
60 |
+
datasets_nickname[dataset_name] = 'Healthcare'
|
61 |
+
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
|
62 |
+
datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'
|
63 |
+
|
64 |
+
return datasets_nickname
|
data/model_handler.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import Dict
|
4 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
5 |
+
import pandas as pd
|
6 |
+
from .dataset_handler import get_datasets_nickname
|
7 |
+
|
8 |
+
class ModelHandler:
|
9 |
+
def __init__(self, model_infos_path="model_infos.json"):
|
10 |
+
self.api = HfApi()
|
11 |
+
self.model_infos_path = model_infos_path
|
12 |
+
self.model_infos = self._load_model_infos()
|
13 |
+
|
14 |
+
def _load_model_infos(self) -> Dict:
|
15 |
+
if os.path.exists(self.model_infos_path):
|
16 |
+
with open(self.model_infos_path) as f:
|
17 |
+
return json.load(f)
|
18 |
+
return {}
|
19 |
+
|
20 |
+
def _save_model_infos(self):
|
21 |
+
with open(self.model_infos_path, "w") as f:
|
22 |
+
json.dump(self.model_infos, f)
|
23 |
+
|
24 |
+
def get_vidore_data(self, metric="ndcg_at_5"):
|
25 |
+
models = self.api.list_models(filter="vidore")
|
26 |
+
repositories = [model.modelId for model in models] # type: ignore
|
27 |
+
|
28 |
+
datasets_nickname = get_datasets_nickname()
|
29 |
+
for repo_id in repositories:
|
30 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
|
31 |
+
if len(files) == 0:
|
32 |
+
continue
|
33 |
+
else:
|
34 |
+
for file in files:
|
35 |
+
model_name = file.split('_metrics.json')[0]
|
36 |
+
|
37 |
+
if model_name not in self.model_infos:
|
38 |
+
readme_path = hf_hub_download(repo_id, filename="README.md")
|
39 |
+
meta = metadata_load(readme_path)
|
40 |
+
try:
|
41 |
+
result_path = hf_hub_download(repo_id, filename=file)
|
42 |
+
|
43 |
+
with open(result_path) as f:
|
44 |
+
results = json.load(f)
|
45 |
+
|
46 |
+
for dataset in results:
|
47 |
+
results[dataset] = {key: value for key, value in results[dataset].items()}
|
48 |
+
|
49 |
+
self.model_infos[model_name] = {"meta": meta, "results": results}
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading {model_name} - {e}")
|
52 |
+
continue
|
53 |
+
|
54 |
+
#self._save_model_infos()
|
55 |
+
|
56 |
+
model_res = {}
|
57 |
+
if len(self.model_infos) > 0:
|
58 |
+
for model in self.model_infos.keys():
|
59 |
+
res = self.model_infos[model]["results"]
|
60 |
+
dataset_res = {}
|
61 |
+
for dataset in res.keys():
|
62 |
+
if "validation_set" == dataset:
|
63 |
+
continue
|
64 |
+
dataset_res[datasets_nickname[dataset]] = res[dataset][metric]
|
65 |
+
model_res[model] = dataset_res
|
66 |
+
|
67 |
+
df = pd.DataFrame(model_res).T
|
68 |
+
return df
|
69 |
+
return pd.DataFrame()
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def add_rank(df):
|
73 |
+
cols_to_rank = [
|
74 |
+
col
|
75 |
+
for col in df.columns
|
76 |
+
if col
|
77 |
+
not in [
|
78 |
+
"Model",
|
79 |
+
"Model Size (Million Parameters)",
|
80 |
+
"Memory Usage (GB, fp32)",
|
81 |
+
"Embedding Dimensions",
|
82 |
+
"Max Tokens",
|
83 |
+
]
|
84 |
+
]
|
85 |
+
if len(cols_to_rank) == 1:
|
86 |
+
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
87 |
+
else:
|
88 |
+
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
89 |
+
df.sort_values("Average", ascending=False, inplace=True)
|
90 |
+
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
91 |
+
df = df.round(2)
|
92 |
+
# Fill NaN after averaging
|
93 |
+
df.fillna("", inplace=True)
|
94 |
+
return df
|