Spaces:
Running
Running
Tony Wu
commited on
Commit
·
66d537f
1
Parent(s):
658164b
style: apply linter
Browse files- data/model_handler.py +16 -14
data/model_handler.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
from typing import Dict
|
4 |
-
|
5 |
import pandas as pd
|
6 |
-
from
|
|
|
|
|
7 |
|
8 |
BLOCKLIST = ["impactframes"]
|
9 |
|
|
|
10 |
class ModelHandler:
|
11 |
def __init__(self, model_infos_path="model_infos.json"):
|
12 |
self.api = HfApi()
|
@@ -28,21 +31,20 @@ class ModelHandler:
|
|
28 |
repositories = [model.modelId for model in models] # type: ignore
|
29 |
|
30 |
for repo_id in repositories:
|
31 |
-
org_name = repo_id.split(
|
32 |
if org_name in BLOCKLIST:
|
33 |
continue
|
34 |
-
|
35 |
-
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json') or f == 'results.json']
|
36 |
|
37 |
-
|
|
|
38 |
if len(files) == 0:
|
39 |
continue
|
40 |
else:
|
41 |
for file in files:
|
42 |
-
if file.endswith(
|
43 |
-
model_name = repo_id.replace(
|
44 |
else:
|
45 |
-
model_name = file.split(
|
46 |
|
47 |
if model_name not in self.model_infos:
|
48 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
@@ -61,7 +63,7 @@ class ModelHandler:
|
|
61 |
print(f"Error loading {model_name} - {e}")
|
62 |
continue
|
63 |
|
64 |
-
#self._save_model_infos()
|
65 |
|
66 |
model_res = {}
|
67 |
if len(self.model_infos) > 0:
|
@@ -69,7 +71,7 @@ class ModelHandler:
|
|
69 |
res = self.model_infos[model]["results"]
|
70 |
dataset_res = {}
|
71 |
for dataset in res.keys():
|
72 |
-
#for each keyword check if it is in the dataset name if not continue
|
73 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
74 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
75 |
continue
|
@@ -77,9 +79,9 @@ class ModelHandler:
|
|
77 |
dataset_nickname = get_datasets_nickname(dataset)
|
78 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
79 |
model_res[model] = dataset_res
|
80 |
-
|
81 |
df = pd.DataFrame(model_res).T
|
82 |
-
|
83 |
return df
|
84 |
return pd.DataFrame()
|
85 |
|
@@ -104,7 +106,7 @@ class ModelHandler:
|
|
104 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
105 |
df.sort_values("Average", ascending=False, inplace=True)
|
106 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
107 |
-
#multiply values by 100 if they are floats and round to 1 decimal place
|
108 |
for col in df.columns:
|
109 |
if df[col].dtype == "float64":
|
110 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
|
|
1 |
import json
|
2 |
import os
|
3 |
from typing import Dict
|
4 |
+
|
5 |
import pandas as pd
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
7 |
+
|
8 |
+
from .dataset_handler import VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
9 |
|
10 |
BLOCKLIST = ["impactframes"]
|
11 |
|
12 |
+
|
13 |
class ModelHandler:
|
14 |
def __init__(self, model_infos_path="model_infos.json"):
|
15 |
self.api = HfApi()
|
|
|
31 |
repositories = [model.modelId for model in models] # type: ignore
|
32 |
|
33 |
for repo_id in repositories:
|
34 |
+
org_name = repo_id.split("/")[0]
|
35 |
if org_name in BLOCKLIST:
|
36 |
continue
|
|
|
|
|
37 |
|
38 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
39 |
+
|
40 |
if len(files) == 0:
|
41 |
continue
|
42 |
else:
|
43 |
for file in files:
|
44 |
+
if file.endswith("results.json"):
|
45 |
+
model_name = repo_id.replace("/", "_")
|
46 |
else:
|
47 |
+
model_name = file.split("_metrics.json")[0]
|
48 |
|
49 |
if model_name not in self.model_infos:
|
50 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
|
|
63 |
print(f"Error loading {model_name} - {e}")
|
64 |
continue
|
65 |
|
66 |
+
# self._save_model_infos()
|
67 |
|
68 |
model_res = {}
|
69 |
if len(self.model_infos) > 0:
|
|
|
71 |
res = self.model_infos[model]["results"]
|
72 |
dataset_res = {}
|
73 |
for dataset in res.keys():
|
74 |
+
# for each keyword check if it is in the dataset name if not continue
|
75 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
76 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
77 |
continue
|
|
|
79 |
dataset_nickname = get_datasets_nickname(dataset)
|
80 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
81 |
model_res[model] = dataset_res
|
82 |
+
|
83 |
df = pd.DataFrame(model_res).T
|
84 |
+
|
85 |
return df
|
86 |
return pd.DataFrame()
|
87 |
|
|
|
106 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
107 |
df.sort_values("Average", ascending=False, inplace=True)
|
108 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
109 |
+
# multiply values by 100 if they are floats and round to 1 decimal place
|
110 |
for col in df.columns:
|
111 |
if df[col].dtype == "float64":
|
112 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|