import json
import os
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, get_collection
from huggingface_hub.repocard import metadata_load
from typing import Dict
def get_datasets_nickname() -> Dict:
datasets_nickname = {}
collection = get_collection("vidore/vidore-benchmark-667173f98e70a1c0fa4db00d")
collection_items = collection.items
for item in collection_items:
dataset_name = item.item_id
if 'arxivqa' in dataset_name:
datasets_nickname[dataset_name] = 'ArxivQA'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ArxivQA'
datasets_nickname[dataset_name + '_captioning'] = 'ArxivQA'
elif 'docvqa' in dataset_name:
datasets_nickname[dataset_name] = 'DocVQA'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'DocVQA'
datasets_nickname[dataset_name + '_captioning'] = 'DocVQA'
elif 'infovqa' in dataset_name:
datasets_nickname[dataset_name] = 'InfoVQA'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'InfoVQA'
datasets_nickname[dataset_name + '_captioning'] = 'InfoVQA'
elif 'tabfquad' in dataset_name:
datasets_nickname[dataset_name] = 'TabFQuad'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TabFQuad'
datasets_nickname[dataset_name + '_captioning'] = 'TabFQuad'
elif 'tatdqa' in dataset_name:
datasets_nickname[dataset_name] = 'TATDQA'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TATDQA'
datasets_nickname[dataset_name + '_captioning'] = 'TATDQA'
elif 'shiftproject' in dataset_name:
datasets_nickname[dataset_name] = 'ShiftProject'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ShiftProject'
datasets_nickname[dataset_name + '_captioning'] = 'ShiftProject'
elif 'artificial_intelligence' in dataset_name:
datasets_nickname[dataset_name] = 'Artificial Intelligence'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
elif 'energy' in dataset_name:
datasets_nickname[dataset_name] = 'Energy'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
datasets_nickname[dataset_name + '_captioning'] = 'Energy'
elif 'government_reports' in dataset_name:
datasets_nickname[dataset_name] = 'Government Reports'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'
elif 'healthcare' in dataset_name:
datasets_nickname[dataset_name] = 'Healthcare'
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'
return datasets_nickname
def make_clickable_model(model_name, link=None):
if link is None:
desanitized_model_name = model_name.replace("_", "/")
if '/captioning' in desanitized_model_name:
desanitized_model_name = desanitized_model_name.replace('/captioning', '')
if '/ocr' in desanitized_model_name:
desanitized_model_name = desanitized_model_name.replace('/ocr', '')
link = "https://huggingface.co/" + desanitized_model_name
# Remove user from model name
# return (
# f'{model_name.split("/")[-1]}'
# )
return f'{model_name}'
def add_rank(df):
cols_to_rank = [
col
for col in df.columns
if col
not in [
"Model",
"Model Size (Million Parameters)",
"Memory Usage (GB, fp32)",
"Embedding Dimensions",
"Max Tokens",
]
]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
df.sort_values("Average", ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
# Fill NaN after averaging
df.fillna("", inplace=True)
return df
def get_vidore_data():
api = HfApi()
# local cache path
model_infos_path = "model_infos.json"
metric = "ndcg_at_5"
MODEL_INFOS = {}
if os.path.exists(model_infos_path):
with open(model_infos_path) as f:
MODEL_INFOS = json.load(f)
models = api.list_models(filter="vidore")
repositories = [model.modelId for model in models]
datasets_nickname = get_datasets_nickname()
for repo_id in repositories:
files = [f for f in api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
if len(files) == 0:
continue
else :
for file in files:
model_name = file.split('_metrics.json')[0]
if model_name not in MODEL_INFOS:
readme_path = hf_hub_download(repo_id, filename="README.md")
meta = metadata_load(readme_path)
try:
result_path = hf_hub_download(repo_id, filename= file)
with open(result_path) as f:
results = json.load(f)
for dataset in results:
results[dataset] = {key: value for key, value in results[dataset].items() if metric in key}
MODEL_INFOS[model_name] = {"meta":meta, "results": results}
except Exception as e:
print(f"Error loading {model_name} - {e}")
continue
model_res = {}
df = None
if len(MODEL_INFOS) > 0:
for model in MODEL_INFOS.keys():
res = MODEL_INFOS[model]["results"]
dataset_res = {}
for dataset in res.keys():
if "validation_set" == dataset:
continue
dataset_res[datasets_nickname[dataset]] = res[dataset][metric]
model_res[model] = dataset_res
df = pd.DataFrame(model_res).T
#save model_infos
with open(model_infos_path, "w") as f:
json.dump(MODEL_INFOS, f)
return df
def add_rank_and_format(df):
df = df.reset_index()
df = df.rename(columns={"index": "Model"})
df = add_rank(df)
df["Model"] = df["Model"].apply(make_clickable_model)
return df
# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
# 4. Prevent checkbox groups from taking up too much space
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
"""
def get_refresh_function():
def _refresh():
data_task_category = get_vidore_data()
return add_rank_and_format(data_task_category)
return _refresh
data = get_vidore_data()
data = add_rank_and_format(data)
NUM_DATASETS = len(data.columns) - 3
NUM_SCORES = len(data) * NUM_DATASETS
NUM_MODELS = len(data)
with gr.Blocks(css=css) as block:
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 📚🔍")
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the ViDoRe GitHub repository. Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
"""
)
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas", height=500)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(get_refresh_function(), inputs=None, outputs=dataframe, concurrency_limit=20)
gr.Markdown(
f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
"""
+ r"""
Please consider citing:
```bibtex
INSERT LATER
```
"""
)
if __name__ == "__main__":
block.queue(max_size=10).launch(debug=True)