Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,50 @@
|
|
1 |
# URL: https://huggingface.co/spaces/gradio/image_segmentation/
|
2 |
# imports
|
3 |
import gradio as gr
|
4 |
-
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
5 |
-
from PIL import Image
|
6 |
-
import numpy as np
|
7 |
import torch
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
|
|
11 |
|
12 |
-
# load model
|
13 |
-
|
14 |
-
model =
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
image =
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
keep = prob_per_query > gr_slider_confidence/100.0
|
27 |
-
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy()
|
28 |
-
color_mask = np.zeros(image.size+(3,))
|
29 |
-
palette = itertools.cycle(sns.color_palette())
|
30 |
-
for lbl in np.unique(label_per_pixel):
|
31 |
-
color_mask[label_per_pixel==lbl,:] = np.asarray(next(palette))*255
|
32 |
-
pred_img = np.array(image.convert('RGB'))*0.25 + color_mask*0.75
|
33 |
-
pred_img = pred_img.astype(np.uint8)
|
34 |
-
return pred_img
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# define
|
38 |
-
gr_image_input = gr.inputs.Image()
|
39 |
-
gr_slider_confidence = gr.inputs.Slider(0,100,5,85,
|
40 |
-
label='Set confidence threshold for masks')
|
41 |
-
# define output
|
42 |
-
gr_image_output = gr.outputs.Image()
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
# launch
|
53 |
-
demo.launch()
|
|
|
1 |
# URL: https://huggingface.co/spaces/gradio/image_segmentation/
|
2 |
# imports
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
8 |
+
|
9 |
|
10 |
+
# load model
|
11 |
+
device = torch.device("cpu")
|
12 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade").to(device)
|
13 |
+
model.eval()
|
14 |
+
preprocessor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade")
|
15 |
|
16 |
+
# define core and helper fns
|
17 |
+
def visualize_instance_seg_mask(mask):
|
18 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
19 |
+
labels = np.unique(mask)
|
20 |
+
label2color = {label: (random.randint(0, 1), random.randint(0, 255), random.randint(0, 255)) for label in labels}
|
21 |
+
for i in range(image.shape[0]):
|
22 |
+
for j in range(image.shape[1]):
|
23 |
+
image[i, j, :] = label2color[mask[i, j]]
|
24 |
+
image = image / 255
|
25 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def query_image(img):
|
28 |
+
target_size = (img.shape[0], img.shape[1])
|
29 |
+
inputs = preprocessor(images=img, return_tensors="pt")
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(**inputs)
|
32 |
+
outputs.class_queries_logits = outputs.class_queries_logits.cpu()
|
33 |
+
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
|
34 |
+
results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach()
|
35 |
+
results = torch.argmax(results, dim=0).numpy()
|
36 |
+
results = visualize_instance_seg_mask(results)
|
37 |
+
return results
|
38 |
|
39 |
+
# define interface
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
demo = gr.Interface(
|
42 |
+
query_image,
|
43 |
+
inputs=[gr.Image()],
|
44 |
+
outputs="image",
|
45 |
+
title="MaskFormer Demo",
|
46 |
+
examples=["example_1.png", "example_2.png"]
|
47 |
+
)
|
48 |
|
49 |
+
# launch
|
50 |
+
demo.launch()
|