Spaces:
Runtime error
Runtime error
# #Inference using gradio | |
from peft import PeftModel | |
from transformers import Qwen2VLForConditionalGeneration | |
from transformers import AutoProcessor | |
import gradio as gr | |
from transformers import Qwen2VLProcessor | |
from qwen_vl_utils import process_vision_info | |
#load the base model and finetuned adapter | |
base_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
model = PeftModel.from_pretrained(base_model, "vignesha7/qwen2-2b-instruct-Brain-MRI-Description") | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
#inference function | |
def generate_description(sample): | |
system_message = "You are an expert MRI radiographer. you can describe what you see in the mri image" | |
prompt = "Describe accurately what you see in this radiology image." | |
messages = [ | |
{ "role": "system", | |
"content": [{"type": "text", "text": system_message}] | |
}, | |
{ "role": "user", | |
"content" : [ | |
{"type" : "text", "text" : prompt}, | |
{"type" : "image", "image" : sample}] | |
}, | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=256, top_p=1.0, do_sample=True, temperature=0.8) | |
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
### Gradio app ### | |
title = "BrainMRI Radiology Expert" | |
description = "An Qwen2-VL-2B-Instruct model fine tuned on brain mri images.Describes the brain image" | |
demo = gr.Interface( | |
fn=generate_description, | |
inputs=gr.Image(type='pil'), | |
outputs='text', | |
title=title, | |
description=description, | |
) | |
demo.launch() | |