Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import libraries and load the model
|
2 |
+
import random
|
3 |
+
import requests
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import AutoProcessor, Owlv2ForObjectDetection
|
8 |
+
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
9 |
+
|
10 |
+
obj_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
11 |
+
obj_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
|
12 |
+
|
13 |
+
colors = [
|
14 |
+
(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 165, 0), (75, 0, 130),
|
15 |
+
(255, 255, 0), (0, 255, 255), (255, 105, 180), (138, 43, 226), (0, 128, 0),
|
16 |
+
(0, 128, 128), (255, 20, 147), (64, 224, 208), (128, 0, 128), (70, 130, 180),
|
17 |
+
(220, 20, 60), (255, 140, 0), (34, 139, 34), (218, 112, 214), (255, 99, 71),
|
18 |
+
(47, 79, 79), (186, 85, 211), (240, 230, 140), (169, 169, 169), (199, 21, 133)
|
19 |
+
]
|
20 |
+
|
21 |
+
def detect_objects(image, objects):
|
22 |
+
|
23 |
+
texts = [objects]
|
24 |
+
inputs = obj_processor(text=texts, images=image, return_tensors="pt")
|
25 |
+
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = obj_model(**inputs)
|
28 |
+
|
29 |
+
target_sizes = torch.Tensor([image.size[::-1]])
|
30 |
+
results = obj_processor.post_process_object_detection(
|
31 |
+
outputs=outputs, threshold=0.2, target_sizes=target_sizes
|
32 |
+
)
|
33 |
+
|
34 |
+
i = 0
|
35 |
+
text = texts[i]
|
36 |
+
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
37 |
+
return image, boxes, scores, labels
|
38 |
+
|
39 |
+
def annotate_image(image, boxes, scores, labels, objects):
|
40 |
+
draw = ImageDraw.Draw(image)
|
41 |
+
font = ImageFont.load_default()
|
42 |
+
|
43 |
+
for i, (box, score, label) in enumerate(zip(boxes, scores, labels)):
|
44 |
+
box = [round(coord, 2) for coord in box.tolist()]
|
45 |
+
color = colors[label % len(colors)]
|
46 |
+
draw.rectangle(box, outline=color, width=3)
|
47 |
+
draw.text((box[0], box[1]), f"{objects[label]}: {score:.2f}", font=font, fill=color)
|
48 |
+
|
49 |
+
return image
|
50 |
+
|
51 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
52 |
+
from PIL import Image
|
53 |
+
import requests
|
54 |
+
|
55 |
+
cbt_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
56 |
+
cbt_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto")
|
57 |
+
|
58 |
+
import random
|
59 |
+
import time
|
60 |
+
import gradio as gr
|
61 |
+
|
62 |
+
global history
|
63 |
+
history = [
|
64 |
+
{
|
65 |
+
"role": "system",
|
66 |
+
"content" : [
|
67 |
+
{
|
68 |
+
"type": "image",
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"type": "text",
|
72 |
+
"text": "You are an conversation image recognition chatbot. Communicate with humans using natural language. Recognize the images, have a spatial understanding and answer the questions in a concise manner. Generate the best response for a user query. It must be correct lexically and grammatically.",
|
73 |
+
}
|
74 |
+
]
|
75 |
+
}
|
76 |
+
]
|
77 |
+
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
|
82 |
+
with gr.Column(scale=1):
|
83 |
+
|
84 |
+
#gr.Markdown("## Upload an Image")
|
85 |
+
image_input = gr.Image(type="pil", label="Upload your image here")
|
86 |
+
objects_input = gr.Textbox(label="Enter the objects to detect (comma-separated)", placeholder="e.g. 'cat, dog, car'")
|
87 |
+
image_output = gr.Image(type="pil", label="Detected Objects")
|
88 |
+
|
89 |
+
def run_object_detection(image, objects):
|
90 |
+
object_list = [obj.strip() for obj in objects.split(",")]
|
91 |
+
image, boxes, scores, labels = detect_objects(image, object_list)
|
92 |
+
annotated_image = annotate_image(image, boxes, scores, labels, object_list)
|
93 |
+
history.append({
|
94 |
+
'role': 'system',
|
95 |
+
'content': [
|
96 |
+
{
|
97 |
+
'type': 'text',
|
98 |
+
'text': f'In the image the objects detected are {labels}'
|
99 |
+
}
|
100 |
+
]
|
101 |
+
})
|
102 |
+
return annotated_image
|
103 |
+
|
104 |
+
detect_button = gr.Button("Detect Objects")
|
105 |
+
detect_button.click(fn=run_object_detection, inputs=[image_input, objects_input], outputs=image_output)
|
106 |
+
|
107 |
+
with gr.Column(scale=2):
|
108 |
+
|
109 |
+
chatbot = gr.Chatbot()
|
110 |
+
msg = gr.Textbox()
|
111 |
+
clear = gr.ClearButton([msg, chatbot])
|
112 |
+
|
113 |
+
def user(message, chat_history):
|
114 |
+
return "", chat_history + [[message, ""]]
|
115 |
+
|
116 |
+
def chat_function(image, chat_history):
|
117 |
+
|
118 |
+
message = ''
|
119 |
+
|
120 |
+
if chat_history[-1][0] is not None:
|
121 |
+
message = str(chat_history[-1][0])
|
122 |
+
|
123 |
+
history.append({
|
124 |
+
"role": "user",
|
125 |
+
"content" : [
|
126 |
+
{
|
127 |
+
"type": "text",
|
128 |
+
"text": message
|
129 |
+
}
|
130 |
+
]
|
131 |
+
})
|
132 |
+
|
133 |
+
text_prompt = cbt_processor.apply_chat_template(history, add_generation_prompt=True)
|
134 |
+
|
135 |
+
inputs = cbt_processor(
|
136 |
+
text = [text_prompt],
|
137 |
+
images = [image],
|
138 |
+
padding = True,
|
139 |
+
return_tensors = "pt"
|
140 |
+
)
|
141 |
+
|
142 |
+
inputs = inputs.to("cuda")
|
143 |
+
|
144 |
+
output_ids = cbt_model.generate(**inputs, max_new_tokens=1024)
|
145 |
+
|
146 |
+
generated_ids = [
|
147 |
+
output_ids[len(input_ids) :]
|
148 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
149 |
+
]
|
150 |
+
|
151 |
+
bot_output = cbt_processor.batch_decode(
|
152 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
153 |
+
)
|
154 |
+
|
155 |
+
history.append({
|
156 |
+
"role": "assistant",
|
157 |
+
"content" : [
|
158 |
+
{
|
159 |
+
"type": "text",
|
160 |
+
"text": bot_output
|
161 |
+
}
|
162 |
+
]
|
163 |
+
})
|
164 |
+
|
165 |
+
bot_output_str = gr.Markdown(str(bot_output).replace('"', '').replace('[', '').replace(']', ''))
|
166 |
+
for character in bot_output_str:
|
167 |
+
chat_history[-1][1] += character
|
168 |
+
time.sleep(0.05)
|
169 |
+
yield chat_history
|
170 |
+
|
171 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(chat_function, [image_input, chatbot], [chatbot])
|
172 |
+
clear.click(lambda :None, None, chatbot, queue=False)
|
173 |
+
|
174 |
+
demo.launch(debug=True)
|