File size: 1,654 Bytes
d120873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from nltk.tokenize import sent_tokenize
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import src.exception.Exception.Exception as ExceptionCustom


METHOD = "TRANSLATE"

tokenizerROMENG = AutoTokenizer.from_pretrained("BlackKakapo/opus-mt-ro-en")
modelROMENG = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/opus-mt-ro-en")

tokenizerENGROM = AutoTokenizer.from_pretrained("BlackKakapo/opus-mt-en-ro")
modelENGROM = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/opus-mt-en-ro")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
modelROMENG.to(device)
modelENGROM.to(device)


def paraphraseTranslateMethod(requestValue : str):

	exception = ""
	result_value = ""


	exception = ExceptionCustom.checkForException(requestValue, METHOD)
	if exception != "":
		return "", exception

	tokenized_sent_list = sent_tokenize(requestValue)

	for SENTENCE in tokenized_sent_list:

		input_ids1 = tokenizerROMENG(SENTENCE, return_tensors='pt').to(device)

		output1 = modelROMENG.generate(
	        input_ids=input_ids1.input_ids,
	        do_sample=True,
	        max_length=256,
	        top_k=90,
	        top_p=0.97,
	        early_stopping=False
	    )

		result1 = tokenizerROMENG.batch_decode(output1, skip_special_tokens=True)[0]

		input_ids = tokenizerENGROM(result1, return_tensors='pt').to(device)

		output = modelENGROM.generate(
			input_ids=input_ids.input_ids,
			do_sample=True,
			max_length=256,
			top_k=90,
			top_p=0.97,
			early_stopping=False
		)

		result = tokenizerENGROM.batch_decode(output, skip_special_tokens=True)[0]

		result_value += result + " "

	return result_value, ""