vijay800 commited on
Commit
c3567b1
·
1 Parent(s): caf5694

Create gtapp.py

Browse files
Files changed (1) hide show
  1. gtapp.py +27 -0
gtapp.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
3
+
4
+ # Load the T5 model and tokenizer
5
+ model_name = "t5-base"
6
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
7
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
8
+
9
+ def generate_text(input_text):
10
+ # Encode input text and generate output ids
11
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
12
+ output_ids = model.generate(input_ids)
13
+
14
+ # Decode output ids to get generated text
15
+ output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
16
+ return output_text
17
+
18
+ # Gradio interface
19
+ iface = gr.Interface(
20
+ fn=generate_text,
21
+ inputs=gr.inputs.Textbox(placeholder="Enter your prompt here (e.g. 'translate English to French: The weather is nice today.')"),
22
+ outputs=gr.outputs.Textbox(label="Generated Text"),
23
+ title="Text-to-Text Generation with T5",
24
+ description="A demo for text-to-text generation using the T5 model.",
25
+ )
26
+
27
+ iface.launch()