Create gtapp.py
Browse files
gtapp.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
+
|
4 |
+
# Load the T5 model and tokenizer
|
5 |
+
model_name = "t5-base"
|
6 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
7 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_text(input_text):
|
10 |
+
# Encode input text and generate output ids
|
11 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
12 |
+
output_ids = model.generate(input_ids)
|
13 |
+
|
14 |
+
# Decode output ids to get generated text
|
15 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
16 |
+
return output_text
|
17 |
+
|
18 |
+
# Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=generate_text,
|
21 |
+
inputs=gr.inputs.Textbox(placeholder="Enter your prompt here (e.g. 'translate English to French: The weather is nice today.')"),
|
22 |
+
outputs=gr.outputs.Textbox(label="Generated Text"),
|
23 |
+
title="Text-to-Text Generation with T5",
|
24 |
+
description="A demo for text-to-text generation using the T5 model.",
|
25 |
+
)
|
26 |
+
|
27 |
+
iface.launch()
|