File size: 7,826 Bytes
57d7ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# takn from: https://huggingface.co/spaces/frgfm/torch-cam/blob/main/app.py

# streamlit run app.py
from io import BytesIO
import os
import sys
import matplotlib.pyplot as plt
import requests
import streamlit as st
import torch
from PIL import Image
from torchvision import models
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
from torchvision import transforms

from torchcam.methods import CAM
from torchcam import methods as torchcam_methods
from torchcam.utils import overlay_mask
import os.path as osp

root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)

from utils import get_model
from registry_utils import import_registered_modules

import_registered_modules()
# from torchcam.methods._utils import locate_candidate_layer

CAM_METHODS = [
    "CAM",
    # "GradCAM",
    # "GradCAMpp",
    # "SmoothGradCAMpp",
    # "ScoreCAM",
    # "SSCAM",
    # "ISCAM",
    # "XGradCAM",
    # "LayerCAM",
]
TV_MODELS = [
    "resnet18",
    # "resnet50",
]
SR_METHODS = ["GFPGAN", "RealESRGAN", "SRResNet", "CodeFormer", "HAT"]
UPSCALE = ["2", "3", "4"]
LABEL_MAP = [
    "left_eye",
    "right_eye",
]


@torch.no_grad()
def _load_model(model_configs, device="cpu"):
    model_path = os.path.join(root_path, model_configs["model_path"])
    model_configs.pop("model_path")
    model_dict = torch.load(model_path, map_location=device)
    model = get_model(model_configs=model_configs)
    model.load_state_dict(model_dict)
    model = model.to(device)
    model = model.eval()
    return model


def main():
    # Wide mode
    st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")

    # Designing the interface
    st.title("EyeDentify Playground")
    # For newline
    st.write("\n")
    # Set the columns
    cols = st.columns((1, 1))
    # cols = st.columns((1, 1, 1))
    cols[0].header("Input image")
    # cols[1].header("Raw CAM")
    cols[-1].header("Prediction")

    # Sidebar
    # File selection
    st.sidebar.title("Input selection")
    # Disabling warning
    st.set_option("deprecation.showfileUploaderEncoding", False)
    # Choose your own image
    uploaded_file = st.sidebar.file_uploader(
        "Upload files", type=["png", "jpeg", "jpg"]
    )
    if uploaded_file is not None:
        img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")

        cols[0].image(img, use_column_width=True)

    # Model selection
    st.sidebar.title("Setup")
    tv_model = st.sidebar.selectbox(
        "Classification model",
        TV_MODELS,
        help="Supported models from Torchvision",
    )

    # class_choices = [
    #     f"{idx + 1} - {class_name}" for idx, class_name in enumerate(LABEL_MAP)
    # ]
    # class_selection = st.sidebar.selectbox(
    #     "Class selection", ["Predicted class (argmax)", *class_choices]
    # )

    img_configs = {"img_size": [32, 64], "means": None, "stds": None}
    # For newline
    st.sidebar.write("\n")

    if st.sidebar.button("Compute CAM"):
        if uploaded_file is None:
            st.sidebar.error("Please upload an image first")

        else:
            with st.spinner("Analyzing..."):

                preprocess_steps = [transforms.ToTensor()]

                image_size = img_configs["img_size"]
                if image_size is not None:
                    preprocess_steps.append(
                        transforms.Resize(
                            [image_size[0], image_size[-1]],
                            interpolation=transforms.InterpolationMode.BICUBIC,
                            antialias=True,
                        )
                    )

                means = img_configs["means"]
                stds = img_configs["stds"]
                if means is not None and stds is not None:
                    preprocess_steps.append(transforms.Normalize(means, stds))

                preprocess_function = transforms.Compose(preprocess_steps)
                input_img = preprocess_function(img)
                input_img = input_img.unsqueeze(0).to(device="cpu")

                model_configs = {
                    "model_path": root_path
                    + "/pre_trained_models/ResNet18/left_eye.pt",
                    "registered_model_name": "ResNet18",
                    "num_classes": 1,
                }
                registered_model_name = model_configs["registered_model_name"]
                # default_layer = ""
                if tv_model is not None:
                    with st.spinner("Loading model..."):
                        model = _load_model(model_configs)

                if torch.cuda.is_available():
                    model = model.cuda()

                if registered_model_name == "ResNet18":
                    target_layer = model.resnet.layer4[-1].conv2
                elif registered_model_name == "ResNet50":
                    target_layer = model.resnet.layer4[-1].conv3
                else:
                    raise Exception(
                        f"No target layer available for selected model: {registered_model_name}"
                    )

                # target_layer = st.sidebar.text_input(
                #     "Target layer",
                #     default_layer,
                #     help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")',
                # )
                cam_method = "CAM"
                # cam_method = st.sidebar.selectbox(
                #     "CAM method",
                #     CAM_METHODS,
                #     help="The way your class activation map will be computed",
                # )
                if cam_method is not None:
                    # cam_extractor = methods.__dict__[cam_method](
                    #     model,
                    #     target_layer=(
                    #         [s.strip() for s in target_layer.split("+")]
                    #         if len(target_layer) > 0
                    #         else None
                    #     ),
                    # )
                    cam_extractor = torchcam_methods.__dict__[cam_method](
                        model,
                        target_layer=target_layer,
                        fc_layer=model.resnet.fc,
                        input_shape=(3, 32, 64),
                    )
                    # with torch.no_grad():
                    #     if input_mask is not None:
                    #         out = self.model(input_img, input_mask)
                    #     else:
                    #         out = self.model(input_img)
                    # activation_map = cam_extractor(class_idx=target_class)

                # Forward the image to the model
                out = model(input_img)
                print("out = ", out)

                # Select the target class
                # if class_selection == "Predicted class (argmax)":
                #     class_idx = out.squeeze(0).argmax().item()
                # else:
                #     class_idx = LABEL_MAP.index(class_selection.rpartition(" - ")[-1])

                # Retrieve the CAM
                # act_maps = cam_extractor(class_idx=target_class)
                act_maps = cam_extractor(0, out)
                # Fuse the CAMs if there are several
                activation_map = (
                    act_maps[0]
                    if len(act_maps) == 1
                    else cam_extractor.fuse_cams(act_maps)
                )

                # Overlayed CAM
                fig, ax = plt.subplots()
                result = overlay_mask(
                    img, to_pil_image(activation_map, mode="F"), alpha=0.5
                )
                ax.imshow(result)
                ax.axis("off")
                cols[-1].pyplot(fig)


if __name__ == "__main__":
    main()