File size: 2,394 Bytes
0f2d9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import cv2
import sys
import torch
import numpy as np
import os.path as osp
from PIL import Image
from basicsr.utils import img2tensor
from basicsr.archs.srresnet_arch import MSRResNet

ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
sys.path.append(root_path)


class SRResNet:

    def __init__(self, upscale=2, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16):

        self.upscale = int(upscale)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # ------------------ load model for img enhancement -------------------
        self.sr_model = MSRResNet(
            upscale=self.upscale,
            num_in_ch=num_in_ch,
            num_out_ch=num_out_ch,
            num_feat=num_feat,
            num_block=num_block,
        ).to(self.device)

        ckpt_path = os.path.join(
            ROOT_DIR,
            "SR_Inference",
            "srresnet",
            "weights",
            f"SRResNet_{str(self.upscale)}x.pth",
        )
        loadnet = torch.load(ckpt_path, map_location=self.device)
        if "params_ema" in loadnet:
            keyname = "params_ema"
        else:
            keyname = "params"

        self.sr_model.load_state_dict(loadnet[keyname])
        self.sr_model.eval()

    @torch.no_grad()
    def __call__(self, img):
        img_tensor = (
            img2tensor(imgs=img / 255.0, bgr2rgb=True, float32=True)
            .unsqueeze(0)
            .to(self.device)
        )
        restored_img = self.sr_model(img_tensor)[0]
        restored_img = restored_img.permute(1, 2, 0).cpu().numpy()
        restored_img = (restored_img - restored_img.min()) / (
            restored_img.max() - restored_img.min()
        )
        restored_img = (restored_img * 255).astype(np.uint8)
        restored_img = Image.fromarray(restored_img)
        restored_img = np.array(restored_img)
        sr_img = cv2.cvtColor(restored_img, cv2.COLOR_RGB2BGR)

        return sr_img


if __name__ == "__main__":

    srresnet = SRResNet(upscale=2)

    img = cv2.imread(f"{ROOT_DIR}/data/EyeDentify/Wo_SR/original/1/1/frame_01.png")
    sr_img = srresnet(img=img)

    saving_dir = f"{ROOT_DIR}/rough_works/SR_imgs"
    os.makedirs(saving_dir, exist_ok=True)
    cv2.imwrite(f"{saving_dir}/sr_img_srresnet.png", sr_img)