Spaces:
Running
Running
import sys | |
import torch.nn as nn | |
import os.path as osp | |
from torchvision import models | |
import torch.nn.functional as F | |
from registry import MODEL_REGISTRY | |
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) | |
sys.path.append(root_path) | |
# ============================= ResNets ============================= | |
# @MODEL_REGISTRY.register() | |
# class ResNet18(nn.Module): | |
# def __init__(self, model_args): | |
# super(ResNet18, self).__init__() | |
# self.num_classes = model_args.get("num_classes", 1) | |
# self.resnet = models.resnet18(weights=None, num_classes=self.num_classes) | |
# def forward(self, x, masks=None): | |
# return self.resnet(x) | |
# @MODEL_REGISTRY.register() | |
# class ResNet18(nn.Module): | |
# def __init__(self, model_args): | |
# super(ResNet18, self).__init__() | |
# self.num_classes = model_args.get("num_classes", 1) | |
# self.resnet = models.resnet18(weights=None, num_classes=self.num_classes) | |
# def forward(self, x, masks=None): | |
# # Calculate the padding dynamically based on the input size | |
# height, width = x.shape[2], x.shape[3] | |
# pad_height = max(0, (224 - height) // 2) | |
# pad_width = max(0, (224 - width) // 2) | |
# # Apply padding | |
# x = F.pad( | |
# x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0 | |
# ) | |
# x = self.resnet(x) | |
# return x | |
class ResNet18(nn.Module): | |
def __init__(self, model_args): | |
super(ResNet18, self).__init__() | |
self.num_classes = model_args.get("num_classes", 1) | |
self.resnet = models.resnet18(weights=None) | |
self.regression_head = nn.Linear(1000, self.num_classes) | |
def forward(self, x, masks=None): | |
# Calculate the padding dynamically based on the input size | |
height, width = x.shape[2], x.shape[3] | |
pad_height = max(0, (224 - height) // 2) | |
pad_width = max(0, (224 - width) // 2) | |
# Apply padding | |
x = F.pad( | |
x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0 | |
) | |
x = self.resnet(x) | |
x = self.regression_head(x) | |
return x | |
# @MODEL_REGISTRY.register() | |
# class ResNet50(nn.Module): | |
# def __init__(self, model_args): | |
# super(ResNet50, self).__init__() | |
# self.num_classes = model_args.get("num_classes", 1) | |
# self.resnet = models.resnet50(weights=None, num_classes=self.num_classes) | |
# def forward(self, x, masks=None): | |
# return self.resnet(x) | |
# @MODEL_REGISTRY.register() | |
# class ResNet50(nn.Module): | |
# def __init__(self, model_args): | |
# super(ResNet50, self).__init__() | |
# self.num_classes = model_args.get("num_classes", 1) | |
# self.resnet = models.resnet50(weights=None, num_classes=self.num_classes) | |
# def forward(self, x, masks=None): | |
# # Calculate the padding dynamically based on the input size | |
# height, width = x.shape[2], x.shape[3] | |
# pad_height = max(0, (224 - height) // 2) | |
# pad_width = max(0, (224 - width) // 2) | |
# # Apply padding | |
# x = F.pad( | |
# x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0 | |
# ) | |
# x = self.resnet(x) | |
# return x | |
class ResNet50(nn.Module): | |
def __init__(self, model_args): | |
super(ResNet50, self).__init__() | |
self.num_classes = model_args.get("num_classes", 1) | |
self.resnet = models.resnet50(weights=None) | |
self.regression_head = nn.Linear(1000, self.num_classes) | |
def forward(self, x, masks=None): | |
# Calculate the padding dynamically based on the input size | |
height, width = x.shape[2], x.shape[3] | |
pad_height = max(0, (224 - height) // 2) | |
pad_width = max(0, (224 - width) // 2) | |
# Apply padding | |
x = F.pad( | |
x, (pad_width, pad_width, pad_height, pad_height), mode="constant", value=0 | |
) | |
x = self.resnet(x) | |
x = self.regression_head(x) | |
return x | |
# print("Registered models in MODEL_REGISTRY:", MODEL_REGISTRY.keys()) | |