|
import os |
|
from dotenv import find_dotenv, load_dotenv |
|
import streamlit as st |
|
from typing import Generator |
|
from groq import Groq |
|
|
|
_ = load_dotenv(find_dotenv()) |
|
st.set_page_config(page_icon="📃", layout="wide", page_title="Groq & LLaMA3 Chat Bot...") |
|
|
|
|
|
def icon(emoji: str): |
|
"""Shows an emoji as a Notion-style page icon.""" |
|
st.write( |
|
f'<span style="font-size: 78px; line-height: 1">{emoji}</span>', |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
|
|
|
|
st.subheader("Groq Chat with LLaMA3 App", divider="rainbow", anchor=False) |
|
|
|
client = Groq( |
|
api_key=os.environ['GROQ_API_KEY'], |
|
) |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
if "selected_model" not in st.session_state: |
|
st.session_state.selected_model = None |
|
|
|
|
|
models = { |
|
"llama3-70b-8192": {"name": "LLaMA3-70b", "tokens": 8192, "developer": "Meta"}, |
|
"llama3-8b-8192": {"name": "LLaMA3-8b", "tokens": 8192, "developer": "Meta"}, |
|
"llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"}, |
|
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"}, |
|
"mixtral-8x7b-32768": { |
|
"name": "Mixtral-8x7b-Instruct-v0.1", |
|
"tokens": 32768, |
|
"developer": "Mistral", |
|
}, |
|
} |
|
|
|
|
|
col1, col2 = st.columns([1, 3]) |
|
|
|
|
|
with col1: |
|
model_option = st.selectbox( |
|
"Choose a model:", |
|
options=list(models.keys()), |
|
format_func=lambda x: models[x]["name"], |
|
index=0, |
|
) |
|
max_tokens_range = models[model_option]["tokens"] |
|
max_tokens = st.slider( |
|
"Max Tokens:", |
|
min_value=512, |
|
max_value=max_tokens_range, |
|
value=min(32768, max_tokens_range), |
|
step=512, |
|
help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}", |
|
) |
|
|
|
|
|
if st.session_state.selected_model != model_option: |
|
st.session_state.messages = [] |
|
st.session_state.selected_model = model_option |
|
|
|
|
|
if st.button("Clear Chat"): |
|
st.session_state.messages = [] |
|
|
|
|
|
for message in st.session_state.messages: |
|
avatar = "🔋" if message["role"] == "assistant" else "🧑💻" |
|
with st.chat_message(message["role"], avatar=avatar): |
|
st.markdown(message["content"]) |
|
|
|
|
|
def generate_chat_responses(chat_completion) -> Generator[str, None, None]: |
|
"""Yield chat response content from the Groq API response.""" |
|
for chunk in chat_completion: |
|
if chunk.choices[0].delta.content: |
|
yield chunk.choices[0].delta.content |
|
|
|
|
|
if prompt := st.chat_input("Enter your prompt here..."): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
with st.chat_message("user", avatar="🧑💻"): |
|
st.markdown(prompt) |
|
|
|
|
|
try: |
|
chat_completion = client.chat.completions.create( |
|
model=model_option, |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
max_tokens=max_tokens, |
|
stream=True, |
|
) |
|
|
|
|
|
with st.chat_message("assistant", avatar="🔋"): |
|
chat_responses_generator = generate_chat_responses(chat_completion) |
|
full_response = st.write_stream(chat_responses_generator) |
|
except Exception as e: |
|
st.error(e, icon="❌") |
|
|
|
|
|
if isinstance(full_response, str): |
|
st.session_state.messages.append( |
|
{"role": "assistant", "content": full_response} |
|
) |
|
else: |
|
|
|
combined_response = "\n".join(str(item) for item in full_response) |
|
st.session_state.messages.append( |
|
{"role": "assistant", "content": combined_response} |
|
) |