import gradio as gr import os from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread from unsloth.chat_templates import get_chat_template from unsloth import FastLanguageModel import torch PLACEHOLDER = """
""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name="umair894/llama3", max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit, ) FastLanguageModel.for_inference(model) # Apply chat template to the tokenizer tokenizer = get_chat_template( tokenizer, chat_template="llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style map_eos_token=True, # Maps to instead ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("") ] # Check if terminators are None and provide a default value if needed terminators = [token_id for token_id in terminators if token_id is not None] if not terminators: terminators = [tokenizer.eos_token_id] # Ensure there is a valid EOS token def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}]) conversation.append({"from": "human", "value": message}) input_ids = tokenizer.apply_chat_template( conversation, tokenize=True, add_generation_prompt=True, # Must add for generation return_tensors="pt", ).to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], examples=[ ['How can i file for a student loan case?'] ], cache_examples=False, ) if __name__ == "__main__": demo.launch(debug=True)