Spaces:
Paused
Paused
File size: 9,221 Bytes
73d6edb 59c3dd8 ef187eb 0cffd40 24478b9 ef187eb 9c1fd31 2b0f02c 24478b9 898752d eb7c9df bb56b33 3de5a45 bb56b33 24478b9 fec3be6 8b1e96d 9c1fd31 ec35e66 4efab5c ec35e66 4efab5c bb56b33 8b1e96d a0f72b8 96fa82a cddab4e 96fa82a 898752d fb5a8e0 2373506 fb5a8e0 7748e83 898752d fec3be6 24478b9 898752d f0de53b 24478b9 f0de53b 24478b9 96fa82a 9a5c550 42c4c5b f0de53b 4429dd4 898752d 82ba711 d94350f 82ba711 96fa82a 11fa80e 24478b9 d06d30a 898752d f0de53b 898752d f0de53b 898752d 9c1fd31 d06d30a 24478b9 0cffd40 8b3ca8d 24478b9 898752d 24478b9 8b3ca8d 0cffd40 3958ec9 8b1e96d 0cffd40 4efab5c 898752d db04c05 fb5a8e0 24478b9 898752d db04c05 898752d db04c05 898752d 24478b9 a9fe87b 24478b9 a9fe87b 24478b9 a9fe87b cf63248 a9fe87b cf63248 898752d 82ba711 9a5c550 898752d 8b1e96d fb5a8e0 898752d 9a5c550 8b1e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import subprocess
subprocess.run(
'pip install numpy==1.26.4',
shell=True
)
import os
import gradio as gr
import torch
import spaces
import random
from PIL import Image
import numpy as np
from glob import glob
from pathlib import Path
from typing import Optional
from diffsynth import save_video, ModelManager, SVDVideoPipeline
from diffsynth import SDVideoPipeline, ControlNetConfigUnit, VideoData, save_frames
from diffsynth.extensions.RIFE import RIFESmoother
import requests
def download_model(url, file_path):
model_file = requests.get(url, allow_redirects=True)
with open(file_path, "wb") as f:
f.write(model_file.content)
download_model("https://civitai.com/api/download/models/266360?type=Model&format=SafeTensor&size=pruned&fp=fp16", "models/stable_diffusion/flat2DAnimerge_v45Sharp.safetensors")
download_model("https://huggingface.co/guoyww/animatediff/resolve/main/mm_sd_v15_v2.ckpt", "models/AnimateDiff/mm_sd_v15_v2.ckpt")
download_model("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_lineart.pth", "models/ControlNet/control_v11p_sd15_lineart.pth")
download_model("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth", "models/ControlNet/control_v11f1e_sd15_tile.pth")
download_model("https://huggingface.co/lllyasviel/Annotators/resolve/main/sk_model.pth", "models/Annotators/sk_model.pth")
download_model("https://huggingface.co/lllyasviel/Annotators/resolve/main/sk_model2.pth", "models/Annotators/sk_model2.pth")
download_model("https://civitai.com/api/download/models/25820?type=Model&format=PickleTensor&size=full&fp=fp16", "models/textual_inversion/verybadimagenegative_v1.3.pt")
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
model_manager = ModelManager(
torch_dtype=torch.float16,
device="cuda",
model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"],
downloading_priority=["HuggingFace"])
pipe = SVDVideoPipeline.from_model_manager(model_manager)
model_manager2 = ModelManager(torch_dtype=torch.float16, device="cuda")
model_manager2.load_textual_inversions("models/textual_inversion")
model_manager2.load_models([
"models/stable_diffusion/flat2DAnimerge_v45Sharp.safetensors",
"models/AnimateDiff/mm_sd_v15_v2.ckpt",
"models/ControlNet/control_v11p_sd15_lineart.pth",
"models/ControlNet/control_v11f1e_sd15_tile.pth",
"models/RIFE/flownet.pkl"
])
pipe2 = SDVideoPipeline.from_model_manager(
model_manager2,
[
ControlNetConfigUnit(
processor_id="lineart",
model_path="models/ControlNet/control_v11p_sd15_lineart.pth",
scale=0.5
),
ControlNetConfigUnit(
processor_id="tile",
model_path="models/ControlNet/control_v11f1e_sd15_tile.pth",
scale=0.5
)
]
)
smoother = RIFESmoother.from_model_manager(model_manager2)
def change_media(image_in, video_in, selected):
if selected == "ExVideo":
return gr.update(visible=True), gr.update(visible=False), image_in
elif selected == "Diffutoon":
return gr.update(visible=False), gr.update(visible=True), video_in
@spaces.GPU(duration=120)
def generate(
media,
selected,
seed: Optional[int] = -1,
num_inference_steps: int = 10,
animatediff_batch_size: int = 32,
animatediff_stride: int = 16,
motion_bucket_id: int = 127,
fps_id: int = 25,
num_frames: int = 50,
prompt: str = "best quality",
output_folder: str = "outputs",
progress=gr.Progress(track_tqdm=True)):
print(media)
if seed == -1:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
if selected == "ExVideo":
image = Image.open(media)
video = pipe(
input_image=image.resize((512, 512)),
num_frames=num_frames,
fps=fps_id,
height=512,
width=512,
motion_bucket_id=motion_bucket_id,
num_inference_steps=num_inference_steps,
min_cfg_scale=2,
max_cfg_scale=2,
contrast_enhance_scale=1.2
)
model_manager.to("cpu")
else:
up_video = VideoData(
video_file=media,
height=1024, width=1024)
input_video = [up_video[i] for i in range(40*60, 41*60)]
video = pipe(
prompt=prompt,
negative_prompt="verybadimagenegative_v1.3",
cfg_scale=3,
clip_skip=2,
controlnet_frames=input_video, num_frames=len(input_video),
num_inference_steps=num_inference_steps,
height=1024,
width=1024,
animatediff_batch_size=animatediff_batch_size,
animatediff_stride=animatediff_stride,
vram_limit_level=0,
)
video = smoother(video)
save_video(video, video_path, fps=fps_id)
return video_path, seed
examples = [
"./train.jpg",
"./girl.webp",
"./robo.jpg",
'./working.mp4',
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
gr.HTML("<h1><center>Exvideo📽️Diffutoon</center></h1>")
gr.HTML("<p><center>Exvideo and Diffutoon video generation<br><b>Update</b>: first version<br><b>Note</b>: ZeroGPU limited, Set the parameters appropriately.</center></p>")
with gr.Row():
video_in = gr.Video(label='Upload Video', height=600, scale=2)
image_in = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath", visible=False)
media = video_in
video = gr.Video(label="Generated Video", height=600, scale=2)
with gr.Column(scale=1):
selected = gr.Radio(
label="Selected App",
choices=["ExVideo", "Diffutoon"],
value="Diffutoon"
)
seed = gr.Slider(
label="Seed (-1 Random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
num_inference_steps = gr.Slider(
label="Inference steps",
info="Inference steps",
step=1,
value=10,
minimum=1,
maximum=50
)
with gr.Accordion("Diffutoon Options", open=False):
animatediff_batch_size = gr.Slider(
label="Animatediff batch size",
minimum=1,
maximum=50,
step=1,
value=32,
)
animatediff_stride = gr.Slider(
label="Animatediff stride",
minimum=1,
maximum=50,
step=1,
value=16,
)
with gr.Accordion("ExVideo Options", open=False):
motion_bucket_id = gr.Slider(
label="Motion bucket id",
info="Controls how much motion to add/remove from the image",
value=127,
step=1,
minimum=1,
maximum=255
)
fps_id = gr.Slider(
label="Frames per second",
info="The length of your video in seconds will be 25/fps",
value=6,
step=1,
minimum=5,
maximum=30
)
num_frames = gr.Slider(
label="Frames num",
info="Frames num",
step=1,
value=50,
minimum=1,
maximum=128
)
prompt = gr.Textbox(label="Prompt")
with gr.Row():
submit_btn = gr.Button(value="Generate")
#stop_btn = gr.Button(value="Stop", variant="stop")
clear_btn = gr.ClearButton([media, seed, video])
selected.change(change_media, inputs=[image_in, video_in, selected], outputs=[image_in, video_in, media])
submit_event = submit_btn.click(fn=generate, inputs=[media, selected, seed, num_inference_steps, animatediff_batch_size, animatediff_stride, motion_bucket_id, fps_id, num_frames, prompt], outputs=[video, seed], api_name="video")
#stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
demo.queue().launch() |