File size: 11,907 Bytes
021dc80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import re
import time
from dataclasses import dataclass
from glob import iglob

import torch
from fire import Fire
from transformers import pipeline

from flux.modules.image_embedders import CannyImageEncoder, DepthImageEncoder
from flux.sampling import denoise, get_noise, get_schedule, prepare_control, unpack
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image


@dataclass
class SamplingOptions:
    prompt: str
    width: int
    height: int
    num_steps: int
    guidance: float
    seed: int | None
    img_cond_path: str
    lora_scale: float | None


def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
    user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
    usage = (
        "Usage: Either write your prompt directly, leave this field empty "
        "to repeat the prompt or write a command starting with a slash:\n"
        "- '/w <width>' will set the width of the generated image\n"
        "- '/h <height>' will set the height of the generated image\n"
        "- '/s <seed>' sets the next seed\n"
        "- '/g <guidance>' sets the guidance (flux-dev only)\n"
        "- '/n <steps>' sets the number of steps\n"
        "- '/q' to quit"
    )

    while (prompt := input(user_question)).startswith("/"):
        if prompt.startswith("/w"):
            if prompt.count(" ") != 1:
                print(f"Got invalid command '{prompt}'\n{usage}")
                continue
            _, width = prompt.split()
            options.width = 16 * (int(width) // 16)
            print(
                f"Setting resolution to {options.width} x {options.height} "
                f"({options.height *options.width/1e6:.2f}MP)"
            )
        elif prompt.startswith("/h"):
            if prompt.count(" ") != 1:
                print(f"Got invalid command '{prompt}'\n{usage}")
                continue
            _, height = prompt.split()
            options.height = 16 * (int(height) // 16)
            print(
                f"Setting resolution to {options.width} x {options.height} "
                f"({options.height *options.width/1e6:.2f}MP)"
            )
        elif prompt.startswith("/g"):
            if prompt.count(" ") != 1:
                print(f"Got invalid command '{prompt}'\n{usage}")
                continue
            _, guidance = prompt.split()
            options.guidance = float(guidance)
            print(f"Setting guidance to {options.guidance}")
        elif prompt.startswith("/s"):
            if prompt.count(" ") != 1:
                print(f"Got invalid command '{prompt}'\n{usage}")
                continue
            _, seed = prompt.split()
            options.seed = int(seed)
            print(f"Setting seed to {options.seed}")
        elif prompt.startswith("/n"):
            if prompt.count(" ") != 1:
                print(f"Got invalid command '{prompt}'\n{usage}")
                continue
            _, steps = prompt.split()
            options.num_steps = int(steps)
            print(f"Setting number of steps to {options.num_steps}")
        elif prompt.startswith("/q"):
            print("Quitting")
            return None
        else:
            if not prompt.startswith("/h"):
                print(f"Got invalid command '{prompt}'\n{usage}")
            print(usage)
    if prompt != "":
        options.prompt = prompt
    return options


def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
    if options is None:
        return None

    user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
    usage = (
        "Usage: Either write your prompt directly, leave this field empty "
        "to repeat the conditioning image or write a command starting with a slash:\n"
        "- '/q' to quit"
    )

    while True:
        img_cond_path = input(user_question)

        if img_cond_path.startswith("/"):
            if img_cond_path.startswith("/q"):
                print("Quitting")
                return None
            else:
                if not img_cond_path.startswith("/h"):
                    print(f"Got invalid command '{img_cond_path}'\n{usage}")
                print(usage)
            continue

        if img_cond_path == "":
            break

        if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
            (".jpg", ".jpeg", ".png", ".webp")
        ):
            print(f"File '{img_cond_path}' does not exist or is not a valid image file")
            continue

        options.img_cond_path = img_cond_path
        break

    return options


def parse_lora_scale(options: SamplingOptions | None) -> tuple[SamplingOptions | None, bool]:
    changed = False

    if options is None:
        return None, changed

    user_question = "Next lora scale (write /h for help, /q to quit and leave empty to repeat):\n"
    usage = (
        "Usage: Either write your prompt directly, leave this field empty "
        "to repeat the lora scale or write a command starting with a slash:\n"
        "- '/q' to quit"
    )

    while (prompt := input(user_question)).startswith("/"):
        if prompt.startswith("/q"):
            print("Quitting")
            return None, changed
        else:
            if not prompt.startswith("/h"):
                print(f"Got invalid command '{prompt}'\n{usage}")
            print(usage)
    if prompt != "":
        options.lora_scale = float(prompt)
        changed = True
    return options, changed


@torch.inference_mode()
def main(
    name: str,
    width: int = 1024,
    height: int = 1024,
    seed: int | None = None,
    prompt: str = "a robot made out of gold",
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    num_steps: int = 50,
    loop: bool = False,
    guidance: float | None = None,
    offload: bool = False,
    output_dir: str = "output",
    add_sampling_metadata: bool = True,
    img_cond_path: str = "assets/robot.webp",
    lora_scale: float | None = 0.85,
):
    """
    Sample the flux model. Either interactively (set `--loop`) or run for a
    single image.

    Args:
        height: height of the sample in pixels (should be a multiple of 16)
        width: width of the sample in pixels (should be a multiple of 16)
        seed: Set a seed for sampling
        output_name: where to save the output image, `{idx}` will be replaced
            by the index of the sample
        prompt: Prompt used for sampling
        device: Pytorch device
        num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
        loop: start an interactive session and sample multiple times
        guidance: guidance value used for guidance distillation
        add_sampling_metadata: Add the prompt to the image Exif metadata
        img_cond_path: path to conditioning image (jpeg/png/webp)
    """
    nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)

    assert name in [
        "flux-dev-canny",
        "flux-dev-depth",
        "flux-dev-canny-lora",
        "flux-dev-depth-lora",
    ], f"Got unknown model name: {name}"
    if guidance is None:
        if name in ["flux-dev-canny", "flux-dev-canny-lora"]:
            guidance = 30.0
        elif name in ["flux-dev-depth", "flux-dev-depth-lora"]:
            guidance = 10.0
        else:
            raise NotImplementedError()

    if name not in configs:
        available = ", ".join(configs.keys())
        raise ValueError(f"Got unknown model name: {name}, chose from {available}")

    torch_device = torch.device(device)

    output_name = os.path.join(output_dir, "img_{idx}.jpg")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        idx = 0
    else:
        fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
        if len(fns) > 0:
            idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
        else:
            idx = 0

    # init all components
    t5 = load_t5(torch_device, max_length=512)
    clip = load_clip(torch_device)
    model = load_flow_model(name, device="cpu" if offload else torch_device)
    ae = load_ae(name, device="cpu" if offload else torch_device)

    # set lora scale
    if "lora" in name and lora_scale is not None:
        for _, module in model.named_modules():
            if hasattr(module, "set_scale"):
                module.set_scale(lora_scale)

    if name in ["flux-dev-depth", "flux-dev-depth-lora"]:
        img_embedder = DepthImageEncoder(torch_device)
    elif name in ["flux-dev-canny", "flux-dev-canny-lora"]:
        img_embedder = CannyImageEncoder(torch_device)
    else:
        raise NotImplementedError()

    rng = torch.Generator(device="cpu")
    opts = SamplingOptions(
        prompt=prompt,
        width=width,
        height=height,
        num_steps=num_steps,
        guidance=guidance,
        seed=seed,
        img_cond_path=img_cond_path,
        lora_scale=lora_scale,
    )

    if loop:
        opts = parse_prompt(opts)
        opts = parse_img_cond_path(opts)
        if "lora" in name:
            opts, changed = parse_lora_scale(opts)
            if changed:
                # update the lora scale:
                for _, module in model.named_modules():
                    if hasattr(module, "set_scale"):
                        module.set_scale(opts.lora_scale)

    while opts is not None:
        if opts.seed is None:
            opts.seed = rng.seed()
        print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
        t0 = time.perf_counter()

        # prepare input
        x = get_noise(
            1,
            opts.height,
            opts.width,
            device=torch_device,
            dtype=torch.bfloat16,
            seed=opts.seed,
        )
        opts.seed = None
        if offload:
            t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
        inp = prepare_control(
            t5,
            clip,
            x,
            prompt=opts.prompt,
            ae=ae,
            encoder=img_embedder,
            img_cond_path=opts.img_cond_path,
        )
        timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))

        # offload TEs and AE to CPU, load model to gpu
        if offload:
            t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
            torch.cuda.empty_cache()
            model = model.to(torch_device)

        # denoise initial noise
        x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)

        # offload model, load autoencoder to gpu
        if offload:
            model.cpu()
            torch.cuda.empty_cache()
            ae.decoder.to(x.device)

        # decode latents to pixel space
        x = unpack(x.float(), opts.height, opts.width)
        with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
            x = ae.decode(x)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        t1 = time.perf_counter()
        print(f"Done in {t1 - t0:.1f}s")

        idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt)

        if loop:
            print("-" * 80)
            opts = parse_prompt(opts)
            opts = parse_img_cond_path(opts)
            if "lora" in name:
                opts, changed = parse_lora_scale(opts)
                if changed:
                    # update the lora scale:
                    for _, module in model.named_modules():
                        if hasattr(module, "set_scale"):
                            module.set_scale(opts.lora_scale)
        else:
            opts = None


def app():
    Fire(main)


if __name__ == "__main__":
    app()