File size: 8,377 Bytes
021dc80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import math
from typing import Callable

import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from torch import Tensor

from .model import Flux
from .modules.autoencoder import AutoEncoder
from .modules.conditioner import HFEmbedder
from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder


def get_noise(
    num_samples: int,
    height: int,
    width: int,
    device: torch.device,
    dtype: torch.dtype,
    seed: int,
):
    return torch.randn(
        num_samples,
        16,
        # allow for packing
        2 * math.ceil(height / 16),
        2 * math.ceil(width / 16),
        device=device,
        dtype=dtype,
        generator=torch.Generator(device=device).manual_seed(seed),
    )


def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
    bs, c, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    txt = t5(prompt)
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return {
        "img": img,
        "img_ids": img_ids.to(img.device),
        "txt": txt.to(img.device),
        "txt_ids": txt_ids.to(img.device),
        "vec": vec.to(img.device),
    }


def prepare_control(
    t5: HFEmbedder,
    clip: HFEmbedder,
    img: Tensor,
    prompt: str | list[str],
    ae: AutoEncoder,
    encoder: DepthImageEncoder | CannyImageEncoder,
    img_cond_path: str,
) -> dict[str, Tensor]:
    # load and encode the conditioning image
    bs, _, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img_cond = Image.open(img_cond_path).convert("RGB")

    width = w * 8
    height = h * 8
    img_cond = img_cond.resize((width, height), Image.LANCZOS)
    img_cond = np.array(img_cond)
    img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
    img_cond = rearrange(img_cond, "h w c -> 1 c h w")

    with torch.no_grad():
        img_cond = encoder(img_cond)
        img_cond = ae.encode(img_cond)

    img_cond = img_cond.to(torch.bfloat16)
    img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img_cond.shape[0] == 1 and bs > 1:
        img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)

    return_dict = prepare(t5, clip, img, prompt)
    return_dict["img_cond"] = img_cond
    return return_dict


def prepare_fill(
    t5: HFEmbedder,
    clip: HFEmbedder,
    img: Tensor,
    prompt: str | list[str],
    ae: AutoEncoder,
    img_cond_path: str,
    mask_path: str,
) -> dict[str, Tensor]:
    # load and encode the conditioning image and the mask
    bs, _, _, _ = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img_cond = Image.open(img_cond_path).convert("RGB")
    img_cond = np.array(img_cond)
    img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
    img_cond = rearrange(img_cond, "h w c -> 1 c h w")

    mask = Image.open(mask_path).convert("L")
    mask = np.array(mask)
    mask = torch.from_numpy(mask).float() / 255.0
    mask = rearrange(mask, "h w -> 1 1 h w")

    with torch.no_grad():
        img_cond = img_cond.to(img.device)
        mask = mask.to(img.device)
        img_cond = img_cond * (1 - mask)
        img_cond = ae.encode(img_cond)
        mask = mask[:, 0, :, :]
        mask = mask.to(torch.bfloat16)
        mask = rearrange(
            mask,
            "b (h ph) (w pw) -> b (ph pw) h w",
            ph=8,
            pw=8,
        )
        mask = rearrange(mask, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
        if mask.shape[0] == 1 and bs > 1:
            mask = repeat(mask, "1 ... -> bs ...", bs=bs)

    img_cond = img_cond.to(torch.bfloat16)
    img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img_cond.shape[0] == 1 and bs > 1:
        img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)

    img_cond = torch.cat((img_cond, mask), dim=-1)

    return_dict = prepare(t5, clip, img, prompt)
    return_dict["img_cond"] = img_cond.to(img.device)
    return return_dict


def prepare_redux(
    t5: HFEmbedder,
    clip: HFEmbedder,
    img: Tensor,
    prompt: str | list[str],
    encoder: ReduxImageEncoder,
    img_cond_path: str,
) -> dict[str, Tensor]:
    bs, _, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img_cond = Image.open(img_cond_path).convert("RGB")
    with torch.no_grad():
        img_cond = encoder(img_cond)

    img_cond = img_cond.to(torch.bfloat16)
    if img_cond.shape[0] == 1 and bs > 1:
        img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    txt = t5(prompt)
    txt = torch.cat((txt, img_cond.to(txt)), dim=-2)
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return {
        "img": img,
        "img_ids": img_ids.to(img.device),
        "txt": txt.to(img.device),
        "txt_ids": txt_ids.to(img.device),
        "vec": vec.to(img.device),
    }


def time_shift(mu: float, sigma: float, t: Tensor):
    return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)


def get_lin_function(
    x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
    m = (y2 - y1) / (x2 - x1)
    b = y1 - m * x1
    return lambda x: m * x + b


def get_schedule(
    num_steps: int,
    image_seq_len: int,
    base_shift: float = 0.5,
    max_shift: float = 1.15,
    shift: bool = True,
) -> list[float]:
    # extra step for zero
    timesteps = torch.linspace(1, 0, num_steps + 1)

    # shifting the schedule to favor high timesteps for higher signal images
    if shift:
        # estimate mu based on linear estimation between two points
        mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
        timesteps = time_shift(mu, 1.0, timesteps)

    return timesteps.tolist()


def denoise(
    model: Flux,
    # model input
    img: Tensor,
    img_ids: Tensor,
    txt: Tensor,
    txt_ids: Tensor,
    vec: Tensor,
    # sampling parameters
    timesteps: list[float],
    guidance: float = 4.0,
    # extra img tokens
    img_cond: Tensor | None = None,
):
    # this is ignored for schnell
    guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
    for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
        t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
        pred = model(
            img=torch.cat((img, img_cond), dim=-1) if img_cond is not None else img,
            img_ids=img_ids,
            txt=txt,
            txt_ids=txt_ids,
            y=vec,
            timesteps=t_vec,
            guidance=guidance_vec,
        )

        img = img + (t_prev - t_curr) * pred

    return img


def unpack(x: Tensor, height: int, width: int) -> Tensor:
    return rearrange(
        x,
        "b (h w) (c ph pw) -> b c (h ph) (w pw)",
        h=math.ceil(height / 16),
        w=math.ceil(width / 16),
        ph=2,
        pw=2,
    )