Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,610 Bytes
ed629f3 f4eb23f 0e8c288 6f619d7 00adabe f4eb23f 51a7d9e 00adabe 51a7d9e f4eb23f 51a7d9e 00adabe e6367a7 f4eb23f 51a7d9e 00adabe bd34f0b f4eb23f bd34f0b 51a7d9e 00adabe 51a7d9e bd34f0b 51a7d9e 00adabe f4eb23f 00adabe f4eb23f 00adabe f4eb23f 00adabe fc09eb0 00adabe 27af03d 00adabe 3a15f63 00adabe 51a7d9e 14a069f 51a7d9e f4eb23f 51a7d9e f4eb23f 51a7d9e f4eb23f 00adabe 51a7d9e bd34f0b 00adabe bd34f0b 00adabe bd34f0b 51a7d9e 00adabe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import spaces
import os
# import subprocess
# import shlex
# if os.getenv('SYSTEM') == 'spaces':
# git_repo = "https://github.com/huggingface/transformers.git"
# subprocess.call(shlex.split(f'pip install git+{git_repo}'))
import time
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL_LIST = ["openbmb/MiniCPM3-4B"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
TITLE = "<h1><center>MiniCPM3-4B</center></h1>"
PLACEHOLDER = """
<center>
<p>MiniCPM3-4B is the 3rd generation of MiniCPM series.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
temperature: float = 0.7,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
streamer=streamer,
repetition_penalty=penalty,
pad_token_id = 1,
eos_token_id = 50279,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.7,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=32768,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |