Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import spaces | |
import gradio as gr | |
from diffusers import FluxFillPipeline | |
import random | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from PIL import Image, ImageOps | |
CSS = """ | |
h1 { | |
margin-top: 10px | |
} | |
""" | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
MAX_SEED = np.iinfo(np.int32).max | |
repo_id = "black-forest-labs/FLUX.1-Fill-dev" | |
if torch.cuda.is_available(): | |
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda") | |
def gen( | |
prompt, | |
image, | |
mask_image, | |
width, | |
height, | |
num_inference_steps, | |
seed, | |
guidance_scale, | |
): | |
generator = torch.Generator("cpu").manual_seed(seed) | |
result = pipe( | |
prompt=prompt, | |
image=image, | |
mask_image=mask_image, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
max_sequence_length=512, | |
).images[0] | |
return result | |
def inpaintGen( | |
imgMask, | |
inpaint_prompt: str, | |
guidance: float, | |
num_steps: int, | |
seed: int, | |
randomize_seed: bool, | |
progress=gr.Progress(track_tqdm=True)): | |
source_path = imgMask["background"] | |
mask_path = imgMask["layers"][0] | |
if not source_path: | |
raise gr.Error("Please upload an image.") | |
if not mask_path: | |
raise gr.Error("Please draw a mask on the image.") | |
source_img = Image.open(source_path).convert("RGB") | |
mask_img = Image.open(mask_path) | |
alpha_channel=mask_img.split()[3] | |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
width, height = source_img.size | |
new_width = (width // 16) * 16 | |
new_height = (height // 16) * 16 | |
# If the image size is not already divisible by 16, resize it | |
if width != new_width or height != new_height: | |
source_img = source_img.resize((new_width, new_height), Image.LANCZOS) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator("cpu").manual_seed(seed) | |
result = gen( | |
inpaint_prompt, | |
source_img, | |
binary_mask, | |
new_width, | |
new_height, | |
num_steps, | |
seed, | |
guidance, | |
) | |
return result, seed | |
def add_border_and_mask(image, zoom_all=1.0, zoom_left=0, zoom_right=0, zoom_up=0, zoom_down=0, overlap=0.01): | |
"""Adds a black border around the image with individual side control and mask overlap""" | |
orig_width, orig_height = image.size | |
# Calculate padding for each side (in pixels) | |
left_pad = int(orig_width * zoom_left) | |
right_pad = int(orig_width * zoom_right) | |
top_pad = int(orig_height * zoom_up) | |
bottom_pad = int(orig_height * zoom_down) | |
# Calculate overlap in pixels | |
overlap_left = int(orig_width * overlap) | |
overlap_right = int(orig_width * overlap) | |
overlap_top = int(orig_height * overlap) | |
overlap_bottom = int(orig_height * overlap) | |
# If using the all-sides zoom, add it to each side | |
if zoom_all > 1.0: | |
extra_each_side = (zoom_all - 1.0) / 2 | |
left_pad += int(orig_width * extra_each_side) | |
right_pad += int(orig_width * extra_each_side) | |
top_pad += int(orig_height * extra_each_side) | |
bottom_pad += int(orig_height * extra_each_side) | |
# Calculate new dimensions (ensure they're multiples of 32) | |
new_width = 32 * round((orig_width + left_pad + right_pad) / 32) | |
new_height = 32 * round((orig_height + top_pad + bottom_pad) / 32) | |
# Create new image with black border | |
bordered_image = Image.new("RGB", (new_width, new_height), (0, 0, 0)) | |
# Paste original image in position | |
paste_x = left_pad | |
paste_y = top_pad | |
bordered_image.paste(image, (paste_x, paste_y)) | |
# Create mask (white where the border is, black where the original image was) | |
mask = Image.new("L", (new_width, new_height), 255) # White background | |
# Paste black rectangle with overlap adjustment | |
mask.paste( | |
0, | |
( | |
paste_x + overlap_left, # Left edge moves right | |
paste_y + overlap_top, # Top edge moves down | |
paste_x + orig_width - overlap_right, # Right edge moves left | |
paste_y + orig_height - overlap_bottom, # Bottom edge moves up | |
), | |
) | |
return bordered_image, mask | |
def outpaintGen( | |
img, | |
outpaint_prompt: str, | |
overlap: float, | |
zoom_all: float, | |
zoom_left: float, | |
zoom_right: float, | |
zoom_up: float, | |
zoom_down: float, | |
guidance: float, | |
num_steps: int, | |
seed: int, | |
randomize_seed: bool | |
): | |
image = Image.open(img) | |
new_image, mask_image = add_border_and_mask( | |
image, | |
zoom_all=zoom_all, | |
zoom_left=zoom_left, | |
zoom_right=zoom_right, | |
zoom_up=zoom_up, | |
zoom_down=zoom_down, | |
overlap=overlap, | |
) | |
width, height = new_image.size | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
result = gen( | |
outpaint_prompt, | |
new_image, | |
mask_image, | |
width, | |
height, | |
num_steps, | |
seed, | |
guidance, | |
) | |
return result, seed | |
with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo: | |
gr.HTML("<h1><center>Flux.1 Fill dev</center></h1>") | |
gr.HTML(""" | |
<p> | |
<center> | |
FLUX.1 Fill [dev] is a 12 billion parameter rectified flow transformer capable of filling areas in existing images based on a text description. | |
</center> | |
</p> | |
""") | |
with gr.Tab("Inpainting"): | |
with gr.Row(): | |
with gr.Column(): | |
imgMask = gr.ImageMask(type="filepath", label="Image", layers=False, height=800) | |
inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...") | |
with gr.Row(): | |
Inpaint_sendBtn = gr.Button(value="Submit", variant='primary') | |
Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear") | |
image_out = gr.Image(type="pil", label="Output", height=960) | |
with gr.Accordion("Advanced ⚙️", open=False): | |
guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1) | |
num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1) | |
seed = gr.Number(label="Seed", value=42, precision=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
gr.on( | |
triggers = [ | |
inpaint_prompt.submit, | |
Inpaint_sendBtn.click, | |
], | |
fn = inpaintGen, | |
inputs = [ | |
imgMask, | |
inpaint_prompt, | |
guidance, | |
num_steps, | |
seed, | |
randomize_seed | |
], | |
outputs = [image_out, seed] | |
) | |
with gr.Tab("Outpainting"): | |
with gr.Row(): | |
with gr.Column(): | |
img = gr.Image(type="filepath", label="Image", height=800) | |
outpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="In city...") | |
with gr.Row(): | |
outpaint_sendBtn = gr.Button(value="Submit", variant='primary') | |
outpaint_clearBtn = gr.ClearButton([img, outpaint_prompt], value="Clear") | |
image_exp = gr.Image(type="pil", label="Output", height=960) | |
with gr.Accordion("Advanced ⚙️", open=False): | |
overlap = gr.Slider(label="Overlap", minimum=0.01, maximum=0.25, value=0.01, step=0.01) | |
zoom_all = gr.Slider(label="Zoom Out Amount (All Sides)", minimum=1.0, maximum=3.0, value=1.0, step=0.1) | |
with gr.Row(): | |
zoom_left = gr.Slider(label="Left", minimum=0.0, maximum=1.0, value=0.0, step=0.1) | |
zoom_right = gr.Slider(label="Right", minimum=0.0, maximum=1.0, value=0.0, step=0.1) | |
with gr.Row(): | |
zoom_up = gr.Slider(label="Up", minimum=0.0, maximum=1.0, value=0.0, step=0.1) | |
zoom_down = gr.Slider(label="Down", minimum=0.0, maximum=1.0, value=0.0, step=0.1) | |
op_guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30.0, step=0.1) | |
op_num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1) | |
op_seed = gr.Number(label="Seed", value=42, precision=0) | |
op_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
gr.on( | |
triggers = [ | |
outpaint_prompt.submit, | |
outpaint_sendBtn.click, | |
], | |
fn = outpaintGen, | |
inputs = [ | |
img, | |
outpaint_prompt, | |
overlap, | |
zoom_all, | |
zoom_left, | |
zoom_right, | |
zoom_up, | |
zoom_down, | |
op_guidance, | |
op_num_steps, | |
op_seed, | |
op_randomize_seed | |
], | |
outputs = [image_exp, op_seed] | |
) | |
if __name__ == "__main__": | |
demo.launch(show_api=False, share=False) |