Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
-
from diffusers import
|
5 |
import random
|
6 |
import os
|
7 |
import numpy as np
|
@@ -9,30 +9,17 @@ from huggingface_hub import hf_hub_download
|
|
9 |
|
10 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
-
|
13 |
-
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", filename="ae.safetensors", local_dir=".")
|
14 |
|
15 |
if torch.cuda.is_available():
|
16 |
-
|
17 |
-
|
18 |
-
low_cpu_mem_usage=False,
|
19 |
-
ignore_mismatched_sizes=True,
|
20 |
-
torch_dtype=torch.bfloat16
|
21 |
-
)
|
22 |
-
vae = AutoencoderKL.from_pretrained("./ae.safetensors")
|
23 |
-
pipe = FluxInpaintPipeline.from_pretrained(
|
24 |
-
model,
|
25 |
-
vae=vae,
|
26 |
-
transformer=transformer,
|
27 |
-
torch_dtype=torch.bfloat16)
|
28 |
-
pipe.to("cuda")
|
29 |
|
30 |
|
31 |
@spaces.GPU()
|
32 |
def inpaintGen(
|
33 |
imgMask,
|
34 |
inpaint_prompt: str,
|
35 |
-
strength: float,
|
36 |
guidance: float,
|
37 |
num_steps: int,
|
38 |
seed: int,
|
@@ -52,7 +39,7 @@ def inpaintGen(
|
|
52 |
|
53 |
if randomize_seed:
|
54 |
seed = random.randint(0, MAX_SEED)
|
55 |
-
generator = torch.Generator(
|
56 |
|
57 |
result = pipe(
|
58 |
prompt=inpaint_prompt,
|
@@ -61,10 +48,10 @@ def inpaintGen(
|
|
61 |
mask_image=mask_img,
|
62 |
width=width,
|
63 |
height=height,
|
64 |
-
strength=strength,
|
65 |
num_inference_steps=num_steps,
|
66 |
generator=generator,
|
67 |
-
guidance_scale=guidance
|
|
|
68 |
).images[0]
|
69 |
|
70 |
return result
|
@@ -88,7 +75,6 @@ with gr.Blocks(theme="ocean", title="Flux.1 dev inpaint", css=CSS) as demo:
|
|
88 |
Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
|
89 |
image_out = gr.Image(type="pil", label="Output", height=960)
|
90 |
with gr.Accordion("Advanced ⚙️", open=False):
|
91 |
-
strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=1, step=0.1)
|
92 |
guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=20, value=7.5, step=0.1)
|
93 |
num_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
|
94 |
seed = gr.Number(label="Seed", value=42, precision=0)
|
@@ -103,7 +89,6 @@ with gr.Blocks(theme="ocean", title="Flux.1 dev inpaint", css=CSS) as demo:
|
|
103 |
inputs = [
|
104 |
imgMask,
|
105 |
inpaint_prompt,
|
106 |
-
strength,
|
107 |
guidance,
|
108 |
num_steps,
|
109 |
seed,
|
|
|
1 |
import torch
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
+
from diffusers import FluxFillPipeline
|
5 |
import random
|
6 |
import os
|
7 |
import numpy as np
|
|
|
9 |
|
10 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
+
|
|
|
13 |
|
14 |
if torch.cuda.is_available():
|
15 |
+
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
|
16 |
+
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
@spaces.GPU()
|
20 |
def inpaintGen(
|
21 |
imgMask,
|
22 |
inpaint_prompt: str,
|
|
|
23 |
guidance: float,
|
24 |
num_steps: int,
|
25 |
seed: int,
|
|
|
39 |
|
40 |
if randomize_seed:
|
41 |
seed = random.randint(0, MAX_SEED)
|
42 |
+
generator = torch.Generator("cpu").manual_seed(seed)
|
43 |
|
44 |
result = pipe(
|
45 |
prompt=inpaint_prompt,
|
|
|
48 |
mask_image=mask_img,
|
49 |
width=width,
|
50 |
height=height,
|
|
|
51 |
num_inference_steps=num_steps,
|
52 |
generator=generator,
|
53 |
+
guidance_scale=guidance,
|
54 |
+
max_sequence_length=512,
|
55 |
).images[0]
|
56 |
|
57 |
return result
|
|
|
75 |
Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
|
76 |
image_out = gr.Image(type="pil", label="Output", height=960)
|
77 |
with gr.Accordion("Advanced ⚙️", open=False):
|
|
|
78 |
guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=20, value=7.5, step=0.1)
|
79 |
num_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
|
80 |
seed = gr.Number(label="Seed", value=42, precision=0)
|
|
|
89 |
inputs = [
|
90 |
imgMask,
|
91 |
inpaint_prompt,
|
|
|
92 |
guidance,
|
93 |
num_steps,
|
94 |
seed,
|