import os import re import time from dataclasses import dataclass from glob import iglob import torch from fire import Fire from PIL import Image from transformers import pipeline from flux.sampling import denoise, get_noise, get_schedule, prepare_fill, unpack from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image @dataclass class SamplingOptions: prompt: str width: int height: int num_steps: int guidance: float seed: int | None img_cond_path: str img_mask_path: str def parse_prompt(options: SamplingOptions) -> SamplingOptions | None: user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n" usage = ( "Usage: Either write your prompt directly, leave this field empty " "to repeat the prompt or write a command starting with a slash:\n" "- '/s ' sets the next seed\n" "- '/g ' sets the guidance (flux-dev only)\n" "- '/n ' sets the number of steps\n" "- '/q' to quit" ) while (prompt := input(user_question)).startswith("/"): if prompt.startswith("/g"): if prompt.count(" ") != 1: print(f"Got invalid command '{prompt}'\n{usage}") continue _, guidance = prompt.split() options.guidance = float(guidance) print(f"Setting guidance to {options.guidance}") elif prompt.startswith("/s"): if prompt.count(" ") != 1: print(f"Got invalid command '{prompt}'\n{usage}") continue _, seed = prompt.split() options.seed = int(seed) print(f"Setting seed to {options.seed}") elif prompt.startswith("/n"): if prompt.count(" ") != 1: print(f"Got invalid command '{prompt}'\n{usage}") continue _, steps = prompt.split() options.num_steps = int(steps) print(f"Setting number of steps to {options.num_steps}") elif prompt.startswith("/q"): print("Quitting") return None else: if not prompt.startswith("/h"): print(f"Got invalid command '{prompt}'\n{usage}") print(usage) if prompt != "": options.prompt = prompt return options def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None: if options is None: return None user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n" usage = ( "Usage: Either write your prompt directly, leave this field empty " "to repeat the conditioning image or write a command starting with a slash:\n" "- '/q' to quit" ) while True: img_cond_path = input(user_question) if img_cond_path.startswith("/"): if img_cond_path.startswith("/q"): print("Quitting") return None else: if not img_cond_path.startswith("/h"): print(f"Got invalid command '{img_cond_path}'\n{usage}") print(usage) continue if img_cond_path == "": break if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith( (".jpg", ".jpeg", ".png", ".webp") ): print(f"File '{img_cond_path}' does not exist or is not a valid image file") continue else: with Image.open(img_cond_path) as img: width, height = img.size if width % 32 != 0 or height % 32 != 0: print(f"Image dimensions must be divisible by 32, got {width}x{height}") continue options.img_cond_path = img_cond_path break return options def parse_img_mask_path(options: SamplingOptions | None) -> SamplingOptions | None: if options is None: return None user_question = "Next conditioning mask (write /h for help, /q to quit and leave empty to repeat):\n" usage = ( "Usage: Either write your prompt directly, leave this field empty " "to repeat the conditioning mask or write a command starting with a slash:\n" "- '/q' to quit" ) while True: img_mask_path = input(user_question) if img_mask_path.startswith("/"): if img_mask_path.startswith("/q"): print("Quitting") return None else: if not img_mask_path.startswith("/h"): print(f"Got invalid command '{img_mask_path}'\n{usage}") print(usage) continue if img_mask_path == "": break if not os.path.isfile(img_mask_path) or not img_mask_path.lower().endswith( (".jpg", ".jpeg", ".png", ".webp") ): print(f"File '{img_mask_path}' does not exist or is not a valid image file") continue else: with Image.open(img_mask_path) as img: width, height = img.size if width % 32 != 0 or height % 32 != 0: print(f"Image dimensions must be divisible by 32, got {width}x{height}") continue else: with Image.open(options.img_cond_path) as img_cond: img_cond_width, img_cond_height = img_cond.size if width != img_cond_width or height != img_cond_height: print( f"Mask dimensions must match conditioning image, got {width}x{height} and {img_cond_width}x{img_cond_height}" ) continue options.img_mask_path = img_mask_path break return options @torch.inference_mode() def main( seed: int | None = None, prompt: str = "a white paper cup", device: str = "cuda" if torch.cuda.is_available() else "cpu", num_steps: int = 50, loop: bool = False, guidance: float = 30.0, offload: bool = False, output_dir: str = "output", add_sampling_metadata: bool = True, img_cond_path: str = "assets/cup.png", img_mask_path: str = "assets/cup_mask.png", ): """ Sample the flux model. Either interactively (set `--loop`) or run for a single image. This demo assumes that the conditioning image and mask have the same shape and that height and width are divisible by 32. Args: seed: Set a seed for sampling output_name: where to save the output image, `{idx}` will be replaced by the index of the sample prompt: Prompt used for sampling device: Pytorch device num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled) loop: start an interactive session and sample multiple times guidance: guidance value used for guidance distillation add_sampling_metadata: Add the prompt to the image Exif metadata img_cond_path: path to conditioning image (jpeg/png/webp) img_mask_path: path to conditioning mask (jpeg/png/webp """ nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device) name = "flux-dev-fill" if name not in configs: available = ", ".join(configs.keys()) raise ValueError(f"Got unknown model name: {name}, chose from {available}") torch_device = torch.device(device) output_name = os.path.join(output_dir, "img_{idx}.jpg") if not os.path.exists(output_dir): os.makedirs(output_dir) idx = 0 else: fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] if len(fns) > 0: idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 else: idx = 0 # init all components t5 = load_t5(torch_device, max_length=128) clip = load_clip(torch_device) model = load_flow_model(name, device="cpu" if offload else torch_device) ae = load_ae(name, device="cpu" if offload else torch_device) rng = torch.Generator(device="cpu") with Image.open(img_cond_path) as img: width, height = img.size opts = SamplingOptions( prompt=prompt, width=width, height=height, num_steps=num_steps, guidance=guidance, seed=seed, img_cond_path=img_cond_path, img_mask_path=img_mask_path, ) if loop: opts = parse_prompt(opts) opts = parse_img_cond_path(opts) with Image.open(opts.img_cond_path) as img: width, height = img.size opts.height = height opts.width = width opts = parse_img_mask_path(opts) while opts is not None: if opts.seed is None: opts.seed = rng.seed() print(f"Generating with seed {opts.seed}:\n{opts.prompt}") t0 = time.perf_counter() # prepare input x = get_noise( 1, opts.height, opts.width, device=torch_device, dtype=torch.bfloat16, seed=opts.seed, ) opts.seed = None if offload: t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch.device) inp = prepare_fill( t5, clip, x, prompt=opts.prompt, ae=ae, img_cond_path=opts.img_cond_path, mask_path=opts.img_mask_path, ) timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) # offload TEs and AE to CPU, load model to gpu if offload: t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu() torch.cuda.empty_cache() model = model.to(torch_device) # denoise initial noise x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance) # offload model, load autoencoder to gpu if offload: model.cpu() torch.cuda.empty_cache() ae.decoder.to(x.device) # decode latents to pixel space x = unpack(x.float(), opts.height, opts.width) with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): x = ae.decode(x) if torch.cuda.is_available(): torch.cuda.synchronize() t1 = time.perf_counter() print(f"Done in {t1 - t0:.1f}s") idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt) if loop: print("-" * 80) opts = parse_prompt(opts) opts = parse_img_cond_path(opts) with Image.open(opts.img_cond_path) as img: width, height = img.size opts.height = height opts.width = width opts = parse_img_mask_path(opts) else: opts = None def app(): Fire(main) if __name__ == "__main__": app()