import os import cv2 import numpy as np import torch from einops import rearrange, repeat from PIL import Image from safetensors.torch import load_file as load_sft from torch import nn from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel from flux.util import print_load_warning class DepthImageEncoder: depth_model_name = "LiheYoung/depth-anything-large-hf" def __init__(self, device): self.device = device self.depth_model = AutoModelForDepthEstimation.from_pretrained(self.depth_model_name).to(device) self.processor = AutoProcessor.from_pretrained(self.depth_model_name) def __call__(self, img: torch.Tensor) -> torch.Tensor: hw = img.shape[-2:] img = torch.clamp(img, -1.0, 1.0) img_byte = ((img + 1.0) * 127.5).byte() img = self.processor(img_byte, return_tensors="pt")["pixel_values"] depth = self.depth_model(img.to(self.device)).predicted_depth depth = repeat(depth, "b h w -> b 3 h w") depth = torch.nn.functional.interpolate(depth, hw, mode="bicubic", antialias=True) depth = depth / 127.5 - 1.0 return depth class CannyImageEncoder: def __init__( self, device, min_t: int = 50, max_t: int = 200, ): self.device = device self.min_t = min_t self.max_t = max_t def __call__(self, img: torch.Tensor) -> torch.Tensor: assert img.shape[0] == 1, "Only batch size 1 is supported" img = rearrange(img[0], "c h w -> h w c") img = torch.clamp(img, -1.0, 1.0) img_np = ((img + 1.0) * 127.5).numpy().astype(np.uint8) # Apply Canny edge detection canny = cv2.Canny(img_np, self.min_t, self.max_t) # Convert back to torch tensor and reshape canny = torch.from_numpy(canny).float() / 127.5 - 1.0 canny = rearrange(canny, "h w -> 1 1 h w") canny = repeat(canny, "b 1 ... -> b 3 ...") return canny.to(self.device) class ReduxImageEncoder(nn.Module): siglip_model_name = "google/siglip-so400m-patch14-384" def __init__( self, device, redux_dim: int = 1152, txt_in_features: int = 4096, redux_path: str | None = os.getenv("FLUX_REDUX"), dtype=torch.bfloat16, ) -> None: assert redux_path is not None, "Redux path must be provided" super().__init__() self.redux_dim = redux_dim self.device = device if isinstance(device, torch.device) else torch.device(device) self.dtype = dtype with self.device: self.redux_up = nn.Linear(redux_dim, txt_in_features * 3, dtype=dtype) self.redux_down = nn.Linear(txt_in_features * 3, txt_in_features, dtype=dtype) sd = load_sft(redux_path, device=str(device)) missing, unexpected = self.load_state_dict(sd, strict=False, assign=True) print_load_warning(missing, unexpected) self.siglip = SiglipVisionModel.from_pretrained(self.siglip_model_name).to(dtype=dtype) self.normalize = SiglipImageProcessor.from_pretrained(self.siglip_model_name) def __call__(self, x: Image.Image) -> torch.Tensor: imgs = self.normalize.preprocess(images=[x], do_resize=True, return_tensors="pt", do_convert_rgb=True) _encoded_x = self.siglip(**imgs.to(device=self.device, dtype=self.dtype)).last_hidden_state projected_x = self.redux_down(nn.functional.silu(self.redux_up(_encoded_x))) return projected_x