import os import torch import spaces import gradio as gr from diffusers import FluxFillPipeline import random import numpy as np from huggingface_hub import hf_hub_download from PIL import Image, ImageOps CSS = """ h1 { margin-top: 10px } """ os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" MAX_SEED = np.iinfo(np.int32).max repo_id = "black-forest-labs/FLUX.1-Fill-dev" if torch.cuda.is_available(): pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda") def create_mask_image(mask_array): # Convert the mask to a numpy array if it's not already if not isinstance(mask_array, np.ndarray): mask_array = np.array(mask_array) # Create a new array with the same shape as the mask, but only for RGB channels processed_mask = np.zeros((mask_array.shape[0], mask_array.shape[1], 3), dtype=np.uint8) # Set transparent parts (alpha=0) to black (0, 0, 0) transparent_mask = mask_array[:, :, 3] == 0 processed_mask[transparent_mask] = [0, 0, 0] # Set black parts (RGB=0, 0, 0 and alpha=255) to white (255, 255, 255) black_mask = (mask_array[:, :, :3] == [0, 0, 0]).all(axis=2) & (mask_array[:, :, 3] == 255) processed_mask[black_mask] = [255, 255, 255] return Image.fromarray(processed_mask) @spaces.GPU() def inpaintGen( imgMask, inpaint_prompt: str, guidance: float, num_steps: int, seed: int, randomize_seed: bool, progress=gr.Progress(track_tqdm=True)): source_path = imgMask["background"] mask_path = imgMask["layers"][0] print(f'source_path: {source_path}') print(f'mask_path: {mask_path}') if not source_path: raise gr.Error("Please upload an image.") if not mask_path: raise gr.Error("Please draw a mask on the image.") source_img = Image.open(source_path).convert("RGB") mask_img = Image.open(mask_path) if mask_img.mode != 'L': mask_img = mask_img.convert('L') mask_img = ImageOps.invert(mask_img) #mask_img = create_mask_image(mask_img) width, height = source_img.size if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator("cpu").manual_seed(seed) result = pipe( prompt=inpaint_prompt, image=source_img, mask_image=mask_img, width=width, height=height, num_inference_steps=num_steps, generator=generator, guidance_scale=guidance, max_sequence_length=512, ).images[0] return result, seed with gr.Blocks(theme="ocean", title="Flux.1 Fill dev", css=CSS) as demo: gr.HTML("