Spaces:
Running
Running
File size: 7,924 Bytes
537af88 c0a58af cd6fc26 537af88 c0a58af d3d3575 537af88 ba5a64a 537af88 30639e2 7a5d2e7 537af88 9f53fdf 537af88 30639e2 537af88 ad326f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
from simplemma import simple_tokenizer
from difflib import Differ
from icecream import ic
from app.webui.patch import model_load,num_tokens_in_string,one_chunk_initial_translation, one_chunk_reflect_on_translation, one_chunk_improve_translation
from app.webui.patch import calculate_chunk_size, multichunk_initial_translation, multichunk_reflect_on_translation, multichunk_improve_translation
from llama_index.core.node_parser import SentenceSplitter
from translatepy.translators.google import GoogleTranslate
from translatepy.exceptions import UnknownLanguage
from translatepy import Language
gtranslator = GoogleTranslate()
progress=gr.Progress()
def tokenize(text):
# Use nltk to tokenize the text
words = simple_tokenizer(text)
# Check if the text contains spaces
if ' ' in text:
# Create a list of words and spaces
tokens = []
for word in words:
tokens.append(word)
if not word.startswith("'") and not word.endswith("'"): # Avoid adding space after punctuation
tokens.append(' ') # Add space after each word
return tokens[:-1] # Remove the last space
else:
return words
def diff_texts(text1, text2):
tokens1 = tokenize(text1)
tokens2 = tokenize(text2)
d = Differ()
diff_result = list(d.compare(tokens1, tokens2))
highlighted_text = []
for token in diff_result:
word = token[2:]
category = None
if token[0] == '+':
category = 'added'
elif token[0] == '-':
category = 'removed'
elif token[0] == '?':
continue # Ignore the hints line
highlighted_text.append((word, category))
return highlighted_text
#modified from src.translaation-agent.utils.tranlsate
def translator(
source_lang: str,
target_lang: str,
source_text: str,
country: str,
max_tokens:int = 1000,
):
"""Translate the source_text from source_lang to target_lang."""
num_tokens_in_text = num_tokens_in_string(source_text)
ic(num_tokens_in_text)
if num_tokens_in_text < max_tokens:
ic("Translating text as single chunk")
progress((1,3), desc="First translation...")
init_translation = one_chunk_initial_translation(
source_lang, target_lang, source_text
)
progress((2,3), desc="Reflecton...")
reflection = one_chunk_reflect_on_translation(
source_lang, target_lang, source_text, init_translation, country
)
progress((3,3), desc="Second translation...")
final_translation = one_chunk_improve_translation(
source_lang, target_lang, source_text, init_translation, reflection
)
return init_translation, reflection, final_translation
else:
ic("Translating text as multiple chunks")
progress((1,5), desc="Calculate chunk size...")
token_size = calculate_chunk_size(
token_count=num_tokens_in_text, token_limit=max_tokens
)
ic(token_size)
#using sentence splitter
text_parser = SentenceSplitter(
chunk_size=token_size,
)
progress((2,5), desc="Spilt source text...")
source_text_chunks = text_parser.split_text(source_text)
progress((3,5), desc="First translation...")
translation_1_chunks = multichunk_initial_translation(
source_lang, target_lang, source_text_chunks
)
init_translation = "".join(translation_1_chunks)
progress((4,5), desc="Reflection...")
reflection_chunks = multichunk_reflect_on_translation(
source_lang,
target_lang,
source_text_chunks,
translation_1_chunks,
country,
)
reflection = "".join(reflection_chunks)
progress((5,5), desc="Second translation...")
translation_2_chunks = multichunk_improve_translation(
source_lang,
target_lang,
source_text_chunks,
translation_1_chunks,
reflection_chunks,
)
final_translation = "".join(translation_2_chunks)
return init_translation, reflection, final_translation
def translator_sec(
endpoint2: str,
model2: str,
api_key2: str,
context_window: int,
num_output: int,
source_lang: str,
target_lang: str,
source_text: str,
country: str,
max_tokens: int = 1000,
gt: bool = False,
):
"""Translate the source_text from source_lang to target_lang."""
num_tokens_in_text = num_tokens_in_string(source_text)
ic(num_tokens_in_text)
if num_tokens_in_text < max_tokens:
ic("Translating text as single chunk")
progress((1,3), desc="First translation...")
if gt:
try:
language = Language(target_lang)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
init_translation = gtranslator.translate(source_text, language).result
else:
init_translation = one_chunk_initial_translation(
source_lang, target_lang, source_text
)
try:
model_load(endpoint2, model2, api_key2, context_window, num_output)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
progress((2,3), desc="Reflecton...")
reflection = one_chunk_reflect_on_translation(
source_lang, target_lang, source_text, init_translation, country
)
progress((3,3), desc="Second translation...")
final_translation = one_chunk_improve_translation(
source_lang, target_lang, source_text, init_translation, reflection
)
return init_translation, reflection, final_translation
else:
ic("Translating text as multiple chunks")
progress((1,5), desc="Calculate chunk size...")
token_size = calculate_chunk_size(
token_count=num_tokens_in_text, token_limit=max_tokens
)
ic(token_size)
#using sentence splitter
text_parser = SentenceSplitter(
chunk_size=token_size,
)
progress((2,5), desc="Spilt source text...")
source_text_chunks = text_parser.split_text(source_text)
progress((3,5), desc="First translation...")
if gt:
try:
language = Language(target_lang)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
translation_1_chunks = gtranslator.translate(source_text_chunks, language).result
else:
translation_1_chunks = multichunk_initial_translation(
source_lang, target_lang, source_text_chunks
)
try:
model_load(endpoint2, model2, api_key2, context_window, num_output)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
init_translation = "".join(translation_1_chunks)
progress((4,5), desc="Reflection...")
reflection_chunks = multichunk_reflect_on_translation(
source_lang,
target_lang,
source_text_chunks,
translation_1_chunks,
country,
)
reflection = "".join(reflection_chunks)
progress((5,5), desc="Second translation...")
translation_2_chunks = multichunk_improve_translation(
source_lang,
target_lang,
source_text_chunks,
translation_1_chunks,
reflection_chunks,
)
final_translation = "".join(translation_2_chunks)
return init_translation, reflection, final_translation |