Spaces:
Running
Running
Delete process.py
Browse files- process.py +0 -213
process.py
DELETED
@@ -1,213 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from simplemma import simple_tokenizer
|
3 |
-
from difflib import Differ
|
4 |
-
from icecream import ic
|
5 |
-
from app.webui.patch import model_load,num_tokens_in_string,one_chunk_initial_translation, one_chunk_reflect_on_translation, one_chunk_improve_translation
|
6 |
-
from app.webui.patch import calculate_chunk_size, multichunk_initial_translation, multichunk_reflect_on_translation, multichunk_improve_translation
|
7 |
-
|
8 |
-
from llama_index.core.node_parser import SentenceSplitter
|
9 |
-
|
10 |
-
def tokenize(text):
|
11 |
-
# Use nltk to tokenize the text
|
12 |
-
words = simple_tokenizer(text)
|
13 |
-
# Check if the text contains spaces
|
14 |
-
if ' ' in text:
|
15 |
-
# Create a list of words and spaces
|
16 |
-
tokens = []
|
17 |
-
for word in words:
|
18 |
-
tokens.append(word)
|
19 |
-
if not word.startswith("'") and not word.endswith("'"): # Avoid adding space after punctuation
|
20 |
-
tokens.append(' ') # Add space after each word
|
21 |
-
return tokens[:-1] # Remove the last space
|
22 |
-
else:
|
23 |
-
return words
|
24 |
-
|
25 |
-
def diff_texts(text1, text2):
|
26 |
-
tokens1 = tokenize(text1)
|
27 |
-
tokens2 = tokenize(text2)
|
28 |
-
|
29 |
-
d = Differ()
|
30 |
-
diff_result = list(d.compare(tokens1, tokens2))
|
31 |
-
|
32 |
-
highlighted_text = []
|
33 |
-
for token in diff_result:
|
34 |
-
word = token[2:]
|
35 |
-
category = None
|
36 |
-
if token[0] == '+':
|
37 |
-
category = 'added'
|
38 |
-
elif token[0] == '-':
|
39 |
-
category = 'removed'
|
40 |
-
elif token[0] == '?':
|
41 |
-
continue # Ignore the hints line
|
42 |
-
|
43 |
-
highlighted_text.append((word, category))
|
44 |
-
|
45 |
-
return highlighted_text
|
46 |
-
|
47 |
-
#modified from src.translaation-agent.utils.tranlsate
|
48 |
-
def translator(
|
49 |
-
source_lang: str,
|
50 |
-
target_lang: str,
|
51 |
-
source_text: str,
|
52 |
-
country: str,
|
53 |
-
max_tokens:int = 1000,
|
54 |
-
):
|
55 |
-
|
56 |
-
"""Translate the source_text from source_lang to target_lang."""
|
57 |
-
num_tokens_in_text = num_tokens_in_string(source_text)
|
58 |
-
|
59 |
-
ic(num_tokens_in_text)
|
60 |
-
|
61 |
-
if num_tokens_in_text < max_tokens:
|
62 |
-
ic("Translating text as single chunk")
|
63 |
-
|
64 |
-
#Note: use yield from B() if put yield in function B()
|
65 |
-
init_translation = one_chunk_initial_translation(
|
66 |
-
source_lang, target_lang, source_text
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
reflection = one_chunk_reflect_on_translation(
|
71 |
-
source_lang, target_lang, source_text, init_translation, country
|
72 |
-
)
|
73 |
-
|
74 |
-
final_translation = one_chunk_improve_translation(
|
75 |
-
source_lang, target_lang, source_text, init_translation, reflection
|
76 |
-
)
|
77 |
-
|
78 |
-
return init_translation, reflection, final_translation
|
79 |
-
|
80 |
-
else:
|
81 |
-
ic("Translating text as multiple chunks")
|
82 |
-
|
83 |
-
token_size = calculate_chunk_size(
|
84 |
-
token_count=num_tokens_in_text, token_limit=max_tokens
|
85 |
-
)
|
86 |
-
|
87 |
-
ic(token_size)
|
88 |
-
|
89 |
-
#using sentence splitter
|
90 |
-
text_parser = SentenceSplitter(
|
91 |
-
chunk_size=token_size,
|
92 |
-
)
|
93 |
-
|
94 |
-
source_text_chunks = text_parser.split_text(source_text)
|
95 |
-
|
96 |
-
translation_1_chunks = multichunk_initial_translation(
|
97 |
-
source_lang, target_lang, source_text_chunks
|
98 |
-
)
|
99 |
-
|
100 |
-
init_translation = "".join(translation_1_chunks)
|
101 |
-
|
102 |
-
reflection_chunks = multichunk_reflect_on_translation(
|
103 |
-
source_lang,
|
104 |
-
target_lang,
|
105 |
-
source_text_chunks,
|
106 |
-
translation_1_chunks,
|
107 |
-
country,
|
108 |
-
)
|
109 |
-
|
110 |
-
reflection = "".join(reflection_chunks)
|
111 |
-
|
112 |
-
translation_2_chunks = multichunk_improve_translation(
|
113 |
-
source_lang,
|
114 |
-
target_lang,
|
115 |
-
source_text_chunks,
|
116 |
-
translation_1_chunks,
|
117 |
-
reflection_chunks,
|
118 |
-
)
|
119 |
-
|
120 |
-
final_translation = "".join(translation_2_chunks)
|
121 |
-
|
122 |
-
return init_translation, reflection, final_translation
|
123 |
-
|
124 |
-
|
125 |
-
def translator_sec(
|
126 |
-
endpoint2: str,
|
127 |
-
model2: str,
|
128 |
-
api_key2: str,
|
129 |
-
context_window: int,
|
130 |
-
num_output: int,
|
131 |
-
source_lang: str,
|
132 |
-
target_lang: str,
|
133 |
-
source_text: str,
|
134 |
-
country: str,
|
135 |
-
max_tokens: int = 1000,
|
136 |
-
):
|
137 |
-
|
138 |
-
"""Translate the source_text from source_lang to target_lang."""
|
139 |
-
num_tokens_in_text = num_tokens_in_string(source_text)
|
140 |
-
|
141 |
-
ic(num_tokens_in_text)
|
142 |
-
|
143 |
-
if num_tokens_in_text < max_tokens:
|
144 |
-
ic("Translating text as single chunk")
|
145 |
-
|
146 |
-
#Note: use yield from B() if put yield in function B()
|
147 |
-
init_translation = one_chunk_initial_translation(
|
148 |
-
source_lang, target_lang, source_text
|
149 |
-
)
|
150 |
-
|
151 |
-
try:
|
152 |
-
model_load(endpoint2, model2, api_key2, context_window, num_output)
|
153 |
-
except Exception as e:
|
154 |
-
raise gr.Error(f"An unexpected error occurred: {e}")
|
155 |
-
|
156 |
-
reflection = one_chunk_reflect_on_translation(
|
157 |
-
source_lang, target_lang, source_text, init_translation, country
|
158 |
-
)
|
159 |
-
|
160 |
-
final_translation = one_chunk_improve_translation(
|
161 |
-
source_lang, target_lang, source_text, init_translation, reflection
|
162 |
-
)
|
163 |
-
|
164 |
-
return init_translation, reflection, final_translation
|
165 |
-
|
166 |
-
else:
|
167 |
-
ic("Translating text as multiple chunks")
|
168 |
-
|
169 |
-
token_size = calculate_chunk_size(
|
170 |
-
token_count=num_tokens_in_text, token_limit=max_tokens
|
171 |
-
)
|
172 |
-
|
173 |
-
ic(token_size)
|
174 |
-
|
175 |
-
#using sentence splitter
|
176 |
-
text_parser = SentenceSplitter(
|
177 |
-
chunk_size=token_size,
|
178 |
-
)
|
179 |
-
|
180 |
-
source_text_chunks = text_parser.split_text(source_text)
|
181 |
-
|
182 |
-
translation_1_chunks = multichunk_initial_translation(
|
183 |
-
source_lang, target_lang, source_text_chunks
|
184 |
-
)
|
185 |
-
|
186 |
-
init_translation = "".join(translation_1_chunks)
|
187 |
-
|
188 |
-
try:
|
189 |
-
model_load(endpoint2, model2, api_key2, context_window, num_output)
|
190 |
-
except Exception as e:
|
191 |
-
raise gr.Error(f"An unexpected error occurred: {e}")
|
192 |
-
|
193 |
-
reflection_chunks = multichunk_reflect_on_translation(
|
194 |
-
source_lang,
|
195 |
-
target_lang,
|
196 |
-
source_text_chunks,
|
197 |
-
translation_1_chunks,
|
198 |
-
country,
|
199 |
-
)
|
200 |
-
|
201 |
-
reflection = "".join(reflection_chunks)
|
202 |
-
|
203 |
-
translation_2_chunks = multichunk_improve_translation(
|
204 |
-
source_lang,
|
205 |
-
target_lang,
|
206 |
-
source_text_chunks,
|
207 |
-
translation_1_chunks,
|
208 |
-
reflection_chunks,
|
209 |
-
)
|
210 |
-
|
211 |
-
final_translation = "".join(translation_2_chunks)
|
212 |
-
|
213 |
-
return init_translation, reflection, final_translation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|