Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,696 Bytes
8544f4b c98b207 bfe9f15 c98b207 be961e6 c98b207 6e89311 c98b207 0278a97 09399fd c98b207 cbb017b c98b207 0278a97 c98b207 5adecab 2692054 90b9de8 50517e2 c98b207 0278a97 c98b207 2692054 6904764 90b9de8 67d3fd3 6cb9c18 4234c1d fca22da 6cb9c18 90b9de8 0278a97 c98b207 0278a97 2d251eb c98b207 0278a97 c98b207 0278a97 be961e6 6e89311 c98b207 cf7a112 e7455bb 60e7596 a927087 60e7596 e7455bb c98b207 0d0766f c98b207 a927087 c98b207 a927087 c98b207 bb45d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# import subprocess
# subprocess.run(
# 'pip install flash-attn --no-build-isolation',
# env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
# shell=True
# )
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
import os
import time
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1><center>VL-Chatbox</center></h1>"
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModel.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
@spaces.GPU(queue=False)
def stream_chat(message, history: list, temperature: float, max_new_tokens: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
if message["files"]:
image = Image.open(message["files"][-1]).convert('RGB')
conversation.append({"role": "user", "content": message['text']})
else:
if len(history) == 0:
raise gr.Error("Please upload an image first.")
image = None
else:
image = Image.open(history[0][0][0])
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message['text']})
print(f"Conversation is -\n{conversation}")
generate_kwargs = dict(
image=image,
msgs=conversation,
max_new_tokens=max_new_tokens,
temperature=temperature,
sampling=True,
tokenizer=tokenizer,
)
if temperature == 0:
generate_kwargs["sampling"] = False
response = model.chat(**generate_kwargs)
return response
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
)
EXAMPLES = [
[{"text": "What is on the desk?", "files": ["./laptop.jpg"]}],
[{"text": "Where it is?", "files": ["./hotel.jpg"]}],
[{"text": "Can yo describe this image?", "files": ["./spacecat.png"]}]
]
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
),
gr.Examples(EXAMPLES,[chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False) |