File size: 3,696 Bytes
8544f4b
 
 
 
 
 
c98b207
 
 
 
 
bfe9f15
c98b207
be961e6
c98b207
 
 
 
 
 
 
 
 
 
6e89311
c98b207
 
 
 
 
 
 
 
 
 
0278a97
09399fd
c98b207
cbb017b
c98b207
0278a97
 
c98b207
 
 
5adecab
2692054
90b9de8
 
50517e2
c98b207
0278a97
 
c98b207
2692054
6904764
90b9de8
67d3fd3
6cb9c18
4234c1d
fca22da
6cb9c18
90b9de8
0278a97
c98b207
0278a97
2d251eb
c98b207
 
0278a97
 
c98b207
 
0278a97
be961e6
6e89311
 
c98b207
 
 
cf7a112
 
 
 
 
e7455bb
 
60e7596
a927087
 
 
60e7596
e7455bb
c98b207
 
 
 
 
 
 
 
0d0766f
c98b207
a927087
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a927087
 
c98b207
 
 
bb45d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# import subprocess
# subprocess.run(
#     'pip install flash-attn --no-build-isolation', 
#     env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, 
#     shell=True
# )
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
import os
import time


os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>VL-Chatbox</center></h1>"

DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>'

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

model = AutoModel.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16,
    trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()



@spaces.GPU(queue=False)
def stream_chat(message, history: list, temperature: float, max_new_tokens: int):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = [] 
    if message["files"]:
        image = Image.open(message["files"][-1]).convert('RGB')
        conversation.append({"role": "user", "content": message['text']})
    else:
        if len(history) == 0:
            raise gr.Error("Please upload an image first.")
            image = None
        else:
            image = Image.open(history[0][0][0])
            for prompt, answer in history:
                conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
            conversation.append({"role": "user", "content": message['text']})    
    print(f"Conversation is -\n{conversation}")

    generate_kwargs = dict(
        image=image,
        msgs=conversation,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        sampling=True,
        tokenizer=tokenizer,
    )
    if temperature == 0:
        generate_kwargs["sampling"] = False

    response = model.chat(**generate_kwargs)
    return response


chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
    interactive=True, 
    file_types=["image"], 
    placeholder="Enter message or upload file...", 
    show_label=False,

)
EXAMPLES = [
        [{"text": "What is on the desk?", "files": ["./laptop.jpg"]}],
        [{"text": "Where it is?", "files": ["./hotel.jpg"]}],
        [{"text": "Can yo describe this image?", "files": ["./spacecat.png"]}]
]

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        textbox=chat_input,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    ),
    gr.Examples(EXAMPLES,[chat_input])


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)