Spaces:
vilarin
/
Running on Zero

File size: 8,753 Bytes
59c3dd8
ef187eb
 
3cf95dc
 
c3bdaa9
0cffd40
c3bdaa9
ef187eb
11fa80e
b351bc6
9ee250d
63b6eaf
2b0f02c
4b68e4e
11fa80e
d9aab39
8b1e96d
a434ddd
ca39da7
3cf95dc
3599676
ec35e66
 
 
 
4efab5c
 
 
ec35e66
 
4efab5c
 
 
 
 
 
 
 
5d300f8
 
 
 
 
 
b351bc6
 
 
 
 
78536aa
b351bc6
 
 
 
 
4efab5c
9ee250d
5d1149a
 
d06d30a
 
 
8b1e96d
 
010c481
 
a434ddd
5d300f8
c3bdaa9
8b1e96d
 
f286ae5
a434ddd
 
 
 
 
1190b12
e2aa9c9
508b41e
d94350f
3cf95dc
d94350f
 
9b38787
a434ddd
11fa80e
d06d30a
 
 
 
c3bdaa9
0f370cf
d06d30a
c3bdaa9
d06d30a
 
 
c3bdaa9
 
ac63aaa
c3bdaa9
5d1149a
c3bdaa9
 
508b41e
c3bdaa9
 
 
 
ac63aaa
5d1149a
c3bdaa9
 
 
 
 
 
a434ddd
0cffd40
 
8b3ca8d
3958ec9
 
 
 
 
 
 
 
 
 
8b3ca8d
 
0cffd40
3958ec9
8b1e96d
0cffd40
4efab5c
ee95208
5d1149a
8b1e96d
0cffd40
0f370cf
8b1e96d
ee95208
a434ddd
 
e2aa9c9
a434ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c3dea
a434ddd
 
 
 
 
 
e2aa9c9
a434ddd
508b41e
 
 
 
 
 
 
308ba89
d94350f
308ba89
d94350f
 
a434ddd
d94350f
a434ddd
8b3ca8d
 
 
 
 
fe16630
4b5a4e3
8b3ca8d
8b1e96d
 
508b41e
8b1e96d
 
 
508b41e
8b1e96d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import gradio as gr
import torch
import numpy as np
import random
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler, StableDiffusion3Img2ImgPipeline
import spaces
from diffusers.utils import load_image
from PIL import Image
import requests
import transformers
from transformers import AutoTokenizer, T5EncoderModel
from translatepy import Translator

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
model = "stabilityai/stable-diffusion-3-medium"
repo= "stabilityai/stable-diffusion-3-medium-diffusers"
MAX_SEED = np.iinfo(np.int32).max

CSS = """
.gradio-container {
  max-width: 690px !important;
}
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""


vae = AutoencoderKL.from_pretrained(
    repo,
    subfolder="vae",
    torch_dtype=torch.float16,
)

transformer = SD3Transformer2DModel.from_pretrained(
    repo, 
    subfolder="transformer",
    torch_dtype=torch.float16,
)

text_encoder_3 = T5EncoderModel.from_pretrained(
    repo, 
    subfolder="text_encoder_3", 
    torch_dtype=torch.float16,
)

tokenizer_3 = AutoTokenizer.from_pretrained(
    repo, 
    subfolder="tokenizer_3",
    torch_dtype=torch.float16,
)

# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
    pipe = StableDiffusion3Pipeline.from_pretrained(repo, vae=vae, transformer=transformer, tokenizer_3=tokenizer_3, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")
    pipe2 = StableDiffusion3Img2ImgPipeline.from_pretrained(repo, vae=vae, transformer=transformer, tokenizer_3=tokenizer_3, text_encoder_3=text_encoder_3, torch_dtype=torch.float16).to("cuda")

pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe2.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)

# Function 
@spaces.GPU()
def generate_image(
    prompt,
    negative="low quality",
    width=1024,
    height=1024,
    scale=5,
    steps=30,
    strength=0.7,
    seed=-1):

    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    
    print(f'prompt:{prompt}')
    
    text = str(translator.translate(prompt['text'], 'English'))

    
    if prompt['files']:
        #images = Image.open(prompt['files'][-1]).convert('RGB')
        init_image = load_image(prompt['files'][-1]).resize((height, width))
    else:
        init_image = None
    generator = torch.Generator().manual_seed(seed)
    

    if init_image:
        image = pipe2(
            prompt=text,
            image=init_image,
            negative_prompt=negative, 
            guidance_scale=scale,
            num_inference_steps=steps,
            strength=strength,
            generator = generator,
        )
    else:
        image = pipe(
            prompt=text,
            negative_prompt=negative, 
            width=width,
            height=height,
            guidance_scale=scale,
            num_inference_steps=steps,
            generator = generator,
        )        
    return image.images[0]


examples = [
        [{"text": "a female character with long, flowing hair that appears to be made of ethereal, swirling patterns resembling the Northern Lights or Aurora Borealis. The background is dominated by deep blues and purples, creating a mysterious and dramatic atmosphere. The character's face is serene, with pale skin and striking features. She wears a dark-colored outfit with subtle patterns. The overall style of the artwork is reminiscent of fantasy or supernatural genres", "files": []}],
        [{"text": "Digital art, portrait of an anthropomorphic roaring Tiger warrior with full armor, close up in the middle of a battle, behind him there is a banner with the text \"Open Source\".", "files": []}],
        [{"text": "photo of a dog and a cat both standing on a red box, with a blue ball in the middle with a parrot standing on top of the ball. The box has the text \"SD3\"", "files": []}],
		[{"text": "selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", "files": []}],
		[{"text": "A vibrant street wall covered in colorful graffiti, the centerpiece spells \"SD3 MEDIUM\", in a storm of colors", "files": []}],
		[{"text":  "photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", "files": []}],
		[{"text": "anime art of a steampunk inventor in their workshop, surrounded by gears, gadgets, and steam. He is holding a blue potion and a red potion, one in each hand", "files": []}],
		[{"text": "photo of picturesque scene of a road surrounded by lush green trees and shrubs. The road is wide and smooth, leading into the distance. On the right side of the road, there's a blue sports car parked with the license plate spelling \"SD32B\". The sky above is partly cloudy, suggesting a pleasant day. The trees have a mix of green and brown foliage. There are no people visible in the image. The overall composition is balanced, with the car serving as a focal point.", "files": []}],
		[{"text": "photo of young man in a black suit, white shirt, and black tie. He has a neatly styled haircut and is looking directly at the camera with a neutral expression. The background consists of a textured wall with horizontal lines. The photograph is in black and white, emphasizing contrasts and shadows. The man appears to be in his late twenties or early thirties, with fair skin and short, dark hair.", "files": []}],
		[{"text": "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", "files": []}],
]



# Gradio Interface

with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
    gr.HTML("<h1><center>SD3M🦄</center></h1>")
    gr.HTML("<p><center><a href='https://huggingface.co/stabilityai/stable-diffusion-3-medium'>sd3m</a> text/image-to-image generation<br>Update: img2img, add Strength, T5 long Token</center></p>")
    with gr.Group():
        with gr.Row():
            prompt = gr.MultimodalTextbox(label='Enter Your Prompt (Multi-Languages)', interactive=True, placeholder="Enter prompt, add one image.", file_types=['image'], scale=6)
            submit = gr.Button(scale=1, variant='primary')
    img = gr.Image(label='SD3M Generated Image')
    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            negative = gr.Textbox(label="Negative prompt", value="low quality, ugly, blurry, poor face, bad anatomy")
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=1280,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=1280,
                step=8,
                value=1024,
            )
        with gr.Row():
            scale = gr.Slider(
                label="Guidance",
                minimum=3.5,
                maximum=7,
                step=0.1,
                value=5,
            )
            steps = gr.Slider(
                label="Steps",
                minimum=1,
                maximum=50,
                step=1,
                value=30,
            )
            strength = gr.Slider(
                label="Strength",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.7,
            )
        with gr.Row():
            seed = gr.Slider(
                label="Seed (-1 Get Random)",
                minimum=-1,
                maximum=10000000000000,
                step=1,
                value=-1,
            )      
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=img,
        fn=generate_image,
        cache_examples="lazy",
        examples_per_page=4,
    )

    prompt.submit(fn=generate_image,
                 inputs=[prompt, negative, width, height, scale, steps, strength, seed],
                 outputs=img,
                 )
    submit.click(fn=generate_image,
                 inputs=[prompt, negative, width, height, scale, steps, strength, seed],
                 outputs=img,
                 )
    
demo.queue().launch()