Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import spaces | |
import gradio as gr | |
import torch | |
import PIL | |
# Constants | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "tianweiy/DMD2" | |
checkpoints = { | |
"1-Step" : ["dmd2_sdxl_1step_unet.bin", 1], | |
"4-Step" : ["dmd2_sdxl_4step_unet.bin", 4], | |
} | |
loaded = None | |
CSS = """ | |
.gradio-container { | |
max-width: 690px !important; | |
} | |
""" | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) | |
if torch.cuda.is_available(): | |
pipe = DiffusionPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
# Function | |
def generate_image(prompt, ckpt): | |
global loaded | |
print(prompt, ckpt) | |
checkpoint = checkpoints[ckpt][0] | |
num_inference_steps = checkpoints[ckpt][1] | |
if loaded != num_inference_steps: | |
unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoints)), map_location="cuda") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon") | |
loaded = num_inference_steps | |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0) | |
return results.images[0] | |
# Gradio Interface | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML("<h1><center>Adobe DMD2🦖</center></h1>") | |
gr.HTML("<p><center><a href='https://huggingface.co/tianweiy/DMD2'>https://huggingface.co/tianweiy/DMD2</a> text-to-image generation</center></p>") | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8) | |
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) | |
submit = gr.Button(scale=1, variant='primary') | |
img = gr.Image(label='DMD2 Generated Image') | |
prompt.submit(fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=img, | |
) | |
submit.click(fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=img, | |
) | |
demo.queue().launch() |