Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -96,7 +96,7 @@ class ModelWrapper:
|
|
96 |
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
97 |
current_timesteps = current_timesteps.to(torch.float16)
|
98 |
print(f'current_timestpes: {current_timesteps.dtype}')
|
99 |
-
eval_images = self.model(noise
|
100 |
print(type(eval_images))
|
101 |
|
102 |
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
@@ -123,7 +123,7 @@ class ModelWrapper:
|
|
123 |
|
124 |
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
125 |
|
126 |
-
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator).to(device="cuda"
|
127 |
|
128 |
prompt_inputs = self._encode_prompt(prompt)
|
129 |
|
@@ -132,13 +132,13 @@ class ModelWrapper:
|
|
132 |
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
|
133 |
|
134 |
batch_prompt_embeds, batch_pooled_prompt_embeds = (
|
135 |
-
prompt_embeds.repeat(num_images, 1, 1),
|
136 |
-
pooled_prompt_embeds.repeat(num_images, 1, 1)
|
137 |
)
|
138 |
|
139 |
unet_added_conditions = {
|
140 |
"time_ids": add_time_ids,
|
141 |
-
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
142 |
}
|
143 |
|
144 |
|
|
|
96 |
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
97 |
current_timesteps = current_timesteps.to(torch.float16)
|
98 |
print(f'current_timestpes: {current_timesteps.dtype}')
|
99 |
+
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions).sample
|
100 |
print(type(eval_images))
|
101 |
|
102 |
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
|
|
123 |
|
124 |
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
125 |
|
126 |
+
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator).to(device="cuda").to(torch.float16)
|
127 |
|
128 |
prompt_inputs = self._encode_prompt(prompt)
|
129 |
|
|
|
132 |
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
|
133 |
|
134 |
batch_prompt_embeds, batch_pooled_prompt_embeds = (
|
135 |
+
prompt_embeds.repeat(num_images, 1, 1).to(torch.float16),
|
136 |
+
pooled_prompt_embeds.repeat(num_images, 1, 1).to(torch.float16)
|
137 |
)
|
138 |
|
139 |
unet_added_conditions = {
|
140 |
"time_ids": add_time_ids,
|
141 |
+
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
142 |
}
|
143 |
|
144 |
|