Spaces:
Runtime error
Runtime error
vinayakdev
commited on
Commit
·
accfb07
1
Parent(s):
5812cd1
Happy Hugging Face!
Browse files- generator.py +5 -6
generator.py
CHANGED
@@ -50,10 +50,9 @@ def run_model(input_string, **generator_args):
|
|
50 |
output = hftokenizer.batch_decode(res, skip_special_tokens=True)
|
51 |
output = [item.split("<sep>") for item in output]
|
52 |
return output
|
53 |
-
|
54 |
al_tokenizer = att.from_pretrained("deepset/electra-base-squad2")
|
55 |
al_model = amqa.from_pretrained("deepset/electra-base-squad2")
|
56 |
-
|
57 |
# al_model = pickle.load(open('models/al_model.sav', 'rb'))
|
58 |
# al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
|
59 |
def QA(question, context):
|
@@ -62,11 +61,11 @@ def QA(question, context):
|
|
62 |
format = {
|
63 |
'question':question,
|
64 |
'context':context
|
65 |
-
|
66 |
res = nlp(format)
|
67 |
output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
|
68 |
return output
|
69 |
-
|
70 |
# # Run the model, the deepset way
|
71 |
# with torch.no_grad():
|
72 |
# output = model(**inputs)
|
@@ -85,7 +84,7 @@ def QA(question, context):
|
|
85 |
|
86 |
def gen_question(inputs):
|
87 |
|
88 |
-
|
89 |
|
90 |
return questions
|
91 |
|
@@ -100,7 +99,7 @@ def read_file(filepath_name):
|
|
100 |
return context
|
101 |
|
102 |
def create_string_for_generator(context):
|
103 |
-
|
104 |
return (gen_list[0][0]).split('? ')
|
105 |
|
106 |
def creator(context):
|
|
|
50 |
output = hftokenizer.batch_decode(res, skip_special_tokens=True)
|
51 |
output = [item.split("<sep>") for item in output]
|
52 |
return output
|
|
|
53 |
al_tokenizer = att.from_pretrained("deepset/electra-base-squad2")
|
54 |
al_model = amqa.from_pretrained("deepset/electra-base-squad2")
|
55 |
+
|
56 |
# al_model = pickle.load(open('models/al_model.sav', 'rb'))
|
57 |
# al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
|
58 |
def QA(question, context):
|
|
|
61 |
format = {
|
62 |
'question':question,
|
63 |
'context':context
|
64 |
+
}
|
65 |
res = nlp(format)
|
66 |
output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
|
67 |
return output
|
68 |
+
# inputs = tokenizer(question, context, return_tensors="pt")
|
69 |
# # Run the model, the deepset way
|
70 |
# with torch.no_grad():
|
71 |
# output = model(**inputs)
|
|
|
84 |
|
85 |
def gen_question(inputs):
|
86 |
|
87 |
+
questions = run_model(inputs)
|
88 |
|
89 |
return questions
|
90 |
|
|
|
99 |
return context
|
100 |
|
101 |
def create_string_for_generator(context):
|
102 |
+
gen_list = gen_question(context)
|
103 |
return (gen_list[0][0]).split('? ')
|
104 |
|
105 |
def creator(context):
|