vinayakdev commited on
Commit
accfb07
·
1 Parent(s): 5812cd1

Happy Hugging Face!

Browse files
Files changed (1) hide show
  1. generator.py +5 -6
generator.py CHANGED
@@ -50,10 +50,9 @@ def run_model(input_string, **generator_args):
50
  output = hftokenizer.batch_decode(res, skip_special_tokens=True)
51
  output = [item.split("<sep>") for item in output]
52
  return output
53
-
54
  al_tokenizer = att.from_pretrained("deepset/electra-base-squad2")
55
  al_model = amqa.from_pretrained("deepset/electra-base-squad2")
56
-
57
  # al_model = pickle.load(open('models/al_model.sav', 'rb'))
58
  # al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
59
  def QA(question, context):
@@ -62,11 +61,11 @@ def QA(question, context):
62
  format = {
63
  'question':question,
64
  'context':context
65
- }
66
  res = nlp(format)
67
  output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
68
  return output
69
- # inputs = tokenizer(question, context, return_tensors="pt")
70
  # # Run the model, the deepset way
71
  # with torch.no_grad():
72
  # output = model(**inputs)
@@ -85,7 +84,7 @@ def QA(question, context):
85
 
86
  def gen_question(inputs):
87
 
88
- questions = run_model(inputs)
89
 
90
  return questions
91
 
@@ -100,7 +99,7 @@ def read_file(filepath_name):
100
  return context
101
 
102
  def create_string_for_generator(context):
103
- gen_list = gen_question(context)
104
  return (gen_list[0][0]).split('? ')
105
 
106
  def creator(context):
 
50
  output = hftokenizer.batch_decode(res, skip_special_tokens=True)
51
  output = [item.split("<sep>") for item in output]
52
  return output
 
53
  al_tokenizer = att.from_pretrained("deepset/electra-base-squad2")
54
  al_model = amqa.from_pretrained("deepset/electra-base-squad2")
55
+
56
  # al_model = pickle.load(open('models/al_model.sav', 'rb'))
57
  # al_tokenizer = pickle.load(open('models/al_tokenizer.sav', 'rb'))
58
  def QA(question, context):
 
61
  format = {
62
  'question':question,
63
  'context':context
64
+ }
65
  res = nlp(format)
66
  output = f"{question}\n{string.capwords(res['answer'])}\tscore : [{res['score']}] \n"
67
  return output
68
+ # inputs = tokenizer(question, context, return_tensors="pt")
69
  # # Run the model, the deepset way
70
  # with torch.no_grad():
71
  # output = model(**inputs)
 
84
 
85
  def gen_question(inputs):
86
 
87
+ questions = run_model(inputs)
88
 
89
  return questions
90
 
 
99
  return context
100
 
101
  def create_string_for_generator(context):
102
+ gen_list = gen_question(context)
103
  return (gen_list[0][0]).split('? ')
104
 
105
  def creator(context):