File size: 7,675 Bytes
b597b87
59df02f
57d0ffa
b597b87
 
57d0ffa
59df02f
 
 
57d0ffa
b597b87
 
 
 
 
 
 
 
 
 
 
 
 
 
113288d
59df02f
 
 
 
113288d
 
 
 
59df02f
113288d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f4a0e
 
 
 
 
 
 
 
b597b87
113288d
57d0ffa
113288d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59df02f
113288d
c9f4a0e
 
 
 
 
 
 
113288d
 
 
 
 
 
 
 
57d0ffa
113288d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import json
import requests

import gradio as gr

with open("mapping.json", "r") as f:
    mapping = json.load(f)

def get_images(text):
    headers = {
        "Content-Type": "application/json",
        "x-api-key": os.environ["API_KEY"],
    }
    params = {
        "return-images": "true",
        "number-results": "4",
    }
    response = requests.post(
        "https://wjdr33c1id.execute-api.eu-west-1.amazonaws.com/dev/prediction",
        params=params,
        headers=headers,
        json={"data": text},
    )
    images = []
    response_json = response.json()
    image_data = response_json["image"]
    image_label = [mapping[str(id_)]for id_ in response_json["id"] ]

    for image in image_data:
        # got this from https://huggingface.co/spaces/stabilityai/stable-diffusion/blob/main/app.py
        image_b64 = (f"data:image/jpeg;base64,{image}")
        images.append(image_b64)
    return tuple(zip(images, image_label))
  
css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
"""
examples = [
    "people standing around a dead person",
    "a knight on a horse",
    "a woman in armor",
    "a father mourning for his child",
    "van eyck",
    "cubism",
]

block = gr.Blocks(css=css)

with block:
    gr.HTML(
        """
            <div style="text-align: center; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                
                <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
                  Art Search Engine
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
                Read the article <a style="text-decoration: underline;" href="https://huggingface.co/spaces/stabilityai/stable-diffusion-1">Searching Art through Deep Learning</a>
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                with gr.Column():
                    text = gr.Textbox(
                        label="Describe A Scene.",
                        show_label=False,
                        max_lines=1,
                        placeholder="Describe A Scene.",
                        elem_id="prompt-text-input",
                    ).style(
                        border=(True, False, True, True),
                        rounded=(True, False, False, True),
                        container=False,
                    )
                btn = gr.Button("Search Art").style(
                    margin=False,
                    rounded=(False, True, True, False),
                    full_width=False,
                )

        gallery = gr.Gallery(
            label="Art Pieces", show_label=False, elem_id="gallery"
        ).style(grid=[2], height="auto", container=True)
        btn.click(get_images, inputs=text, outputs=gallery, postprocess=False)
        ex = gr.Examples(
            examples=examples,
            fn=get_images,
            inputs=text,
            outputs=gallery,
            cache_examples=False,
        )
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://www.meet-drift.ai/" style="text-decoration: underline;" target="_blank">Drift</a> 
                    </p>
                </div>
           """
        )

block.launch()