File size: 1,330 Bytes
e7769bf
80d2596
e7769bf
 
 
 
 
 
 
80d2596
 
e7769bf
 
480e694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
title: E Commerce
emoji: 💬
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 5.0.1
app_file: app.py
pinned: false
license: apache-2.0
short_description: Testing for e-commerce
---

An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.25.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).

# README.md
# Product Recommender

A machine learning-powered product recommendation system that uses semantic search to find similar products based on user queries.

## Features

- Semantic search using sentence transformers
- FastAPI backend for quick recommendations
- BigQuery integration for training data
- HuggingFace model hosting
- Docker support for easy deployment

## Setup

1. Install dependencies:
```bash
pip install -e .
```

2. Copy and configure environment variables:
```bash
cp backend/.env.example backend/.env
# Edit .env with your credentials
```

3. Train the model:
```bash
python -m backend.train
```

4. Start the API:
```bash
python -m backend.server
```

## API Documentation

Once running, visit http://localhost:8000/docs for the OpenAPI documentation.

## Docker Usage

```bash
cd backend
docker-compose up --build
```

## License

MIT License - See LICENSE file for details