File size: 4,487 Bytes
7955fdc
 
 
775014f
 
7955fdc
 
 
775014f
 
7955fdc
 
 
 
 
 
775014f
7955fdc
 
 
 
 
775014f
7955fdc
 
 
775014f
7955fdc
775014f
7955fdc
775014f
7955fdc
 
 
775014f
 
7955fdc
 
 
 
 
 
 
 
 
 
 
 
775014f
7955fdc
 
 
 
 
 
 
 
775014f
7955fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
775014f
7955fdc
 
 
 
 
 
 
775014f
7955fdc
 
775014f
7955fdc
 
 
 
 
 
 
 
 
 
 
775014f
 
7955fdc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
from huggingface_hub import login
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random


# get access token
access_token = os.environ.get("ACCESS_TOKEN")

# login with access token
if access_token:
    login(token=access_token)
else:
    print("warning: no access token found")

# Initialize the base model and specific LoRA
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

lora_repo = "vincenthugging/flux-lora-leijun"
trigger_word = "leijun"  # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo)

pipe.to("cuda")

MAX_SEED = 2**32-1

@spaces.GPU(duration=80)
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    # Set random seed for reproducibility
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device="cuda").manual_seed(seed)

    # Update progress bar (0% saat mulai)
    progress(0, "Starting image generation...")

    # Generate image with progress updates
    for i in range(1, steps + 1):
        # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
        if i % (steps // 10) == 0:  # Update every 10% of the steps
            progress(i / steps * 100, f"Processing step {i} of {steps}...")

    # Generate image using the pipeline
    image = pipe(
        prompt=f"{prompt} {trigger_word}",
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]

    # Final update (100%)
    progress(100, "Completed!")

    yield image, seed

# Example cached image and settings
example_image_path = "example0.webp"  # Replace with the actual path to the example image
example_prompt = """photo of leijun, black t-shirt with  Logo of Xiaomi Company , face detailed, fit body,
looking at the viewer,holding a handwritten white sign with orange text that says, “Are you OK ?”,
light background,studio light"""

# example settings
example_cfg_scale = 3.5
example_steps = 28
example_width = 1024
example_height = 1024
example_seed = None
example_lora_scale = 0.85

def load_example():
    # Load example image from file
    example_image = Image.open(example_image_path)
    return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image

with gr.Blocks() as app:
    gr.Markdown("# Flux Image Generator for Leijun")
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
            generate_button = gr.Button("Generate")
            
            # Advanced options,with default values
            with gr.Accordion("Advanced options", open=False):
                cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
                width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
                height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
                randomize_seed = gr.Checkbox(True, label="Randomize seed")
                
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
                lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
        
        with gr.Column(scale=1):
            result = gr.Image(label="Generated Image")
            gr.Markdown("Generate images using Lora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")

    # Automatically load example data and image when the interface is launched
    app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
    
    generate_button.click(
        run_lora,
        inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed]
    )

app.queue()
app.launch()