Spaces:
Sleeping
Sleeping
File size: 4,462 Bytes
bd035eb d6985e9 6dd5d74 d6985e9 aac343a d6985e9 6dd5d74 d6985e9 aac343a d6985e9 6dd5d74 d6985e9 aac343a d6985e9 6dd5d74 d6985e9 6dd5d74 d6985e9 6dd5d74 d6985e9 bd035eb d6985e9 6dd5d74 bd035eb d6985e9 6dd5d74 d6985e9 6dd5d74 bd035eb 6dd5d74 d6985e9 bd035eb d6985e9 bd035eb d6985e9 6dd5d74 bd035eb d6985e9 bd035eb d6985e9 bd035eb d6985e9 bd035eb d6985e9 bd035eb d6985e9 bd035eb d6985e9 6dd5d74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import torch
import numpy as np
import plotly.graph_objects as go
from huggingface_hub import snapshot_download
from pathlib import Path
import sys
# 1. Setup Model dari Hugging Face Hub ----------------------------
def setup_model():
REPO_ID = "VLabTech/cognitive_net"
LOCAL_DIR = "cognitive_net_pkg"
# Download repo
snapshot_download(
repo_id=REPO_ID,
local_dir=LOCAL_DIR,
allow_patterns=["*.py", "*.txt"],
repo_type="model",
local_dir_use_symlinks=False
)
# Tambahkan ke path Python
sys.path.insert(0, str(Path(LOCAL_DIR).absolute()))
setup_model()
# 2. Implementasi Model --------------------------------------------
from cognitive_net.network import DynamicCognitiveNet
class CognitiveDemo:
def __init__(self):
self.net = DynamicCognitiveNet(input_size=5, output_size=1)
self.training_loss = []
self.emotion_states = []
def _parse_input(self, sequence_str):
"""Konversi string input ke tensor"""
sequence = [float(x.strip()) for x in sequence_str.split(',')]
if len(sequence) < 6:
raise ValueError("Input minimal 6 angka")
return (
torch.tensor(sequence[:-1]).float(),
torch.tensor([sequence[-1]]).float()
)
def train(self, sequence_str, epochs):
try:
X, y = self._parse_input(sequence_str)
# Training loop
self.training_loss = []
self.emotion_states = []
for _ in range(epochs):
loss = self.net.train_step(X, y)
self.training_loss.append(loss)
self.emotion_states.append(self.net.emotional_state.item())
# Prediksi akhir
with torch.no_grad():
pred = self.net(X)
return {
"prediction": f"{pred.item():.4f}",
"loss_plot": self._create_loss_plot(),
"emotion_plot": self._create_emotion_plot()
}
except Exception as e:
return {"error": str(e)}
def _create_loss_plot(self):
fig = go.Figure()
fig.add_trace(go.Scatter(
y=self.training_loss,
mode='lines+markers',
name='Loss'
))
fig.update_layout(
title='Training Loss',
xaxis_title='Epoch',
yaxis_title='Loss Value'
)
return fig
def _create_emotion_plot(self):
fig = go.Figure()
fig.add_trace(go.Scatter(
y=self.emotion_states,
mode='lines',
name='Emotional State',
line=dict(color='#FF6F61')
))
fig.update_layout(
title='Emotional State Dynamics',
xaxis_title='Epoch',
yaxis_title='State Value'
)
return fig
# 3. Antarmuka Gradio ----------------------------------------------
demo = CognitiveDemo()
with gr.Blocks(theme=gr.themes.Soft(), title="Cognitive Network Demo") as app:
gr.Markdown("# 🧠 Cognitive Network Demo")
gr.Markdown("""
**Demonstrasi Jaringan Saraf Kognitif dengan:**
- Memori Adaptif
- Plastisitas Struktural
- Modulasi Emosional
""")
with gr.Row():
with gr.Column():
input_seq = gr.Textbox(
label="Deret Input (contoh: 0.1, 0.3, 0.5, 0.7, 0.9, 1.1)",
value="0.1, 0.3, 0.5, 0.7, 0.9, 1.1"
)
epochs = gr.Slider(10, 500, value=100, label="Jumlah Epoch")
train_btn = gr.Button("🚀 Latih Model", variant="primary")
with gr.Column():
output_pred = gr.Label(label="Prediksi")
loss_plot = gr.Plot(label="Progress Training")
emotion_plot = gr.Plot(label="Dinamika Emosional")
# Contoh data preset
gr.Examples(
examples=[
["1, 2, 3, 4, 5, 6", 100],
["0.5, 1.0, 1.5, 2.0, 2.5, 3.0", 150],
["10, 8, 6, 4, 2, 0", 200]
],
inputs=[input_seq, epochs],
label="Contoh Input"
)
train_btn.click(
fn=demo.train,
inputs=[input_seq, epochs],
outputs=[output_pred, loss_plot, emotion_plot]
)
# 4. Jalankan Aplikasi ---------------------------------------------
if __name__ == "__main__":
app.launch(debug=True) |