Spaces:
Sleeping
Sleeping
Commit
·
6e36ec1
1
Parent(s):
93f881f
Update app.py
Browse files
app.py
CHANGED
@@ -19,14 +19,14 @@ document_prompt = PromptTemplate(
|
|
19 |
input_variables=["page_content", "Title"],
|
20 |
)
|
21 |
prompt = PromptTemplate(
|
22 |
-
template="""Write
|
23 |
input_variables=["context", "text"])
|
24 |
|
25 |
REPO_ID = "HuggingFaceH4/starchat-beta"
|
26 |
llm = HuggingFaceHub(
|
27 |
repo_id=REPO_ID,
|
28 |
model_kwargs={
|
29 |
-
"max_new_tokens":
|
30 |
"do_sample": True,
|
31 |
"temperature": 0.8,
|
32 |
"top_p": 0.9
|
@@ -52,19 +52,18 @@ def get_data(lookback_days: float, user_query: str):
|
|
52 |
min_date = (max_date - timedelta(days=lookback_days))
|
53 |
query = f"cat:hep-th AND submittedDate:[{min_date.strftime('%Y%m%d')} TO {max_date.strftime('%Y%m%d')}]"
|
54 |
loader = ArxivLoader(query=query, load_max_docs=LOAD_MAX_DOCS)
|
55 |
-
docs = loader.load()
|
56 |
-
docs = [process_document(doc) for doc in docs]
|
57 |
db = Chroma.from_documents(docs, embeddings)
|
58 |
retriever = db.as_retriever()
|
59 |
relevant_docs = retriever.get_relevant_documents(user_query)
|
60 |
print(relevant_docs[0].metadata)
|
61 |
articles = ""
|
62 |
for doc in relevant_docs:
|
63 |
-
articles += f"**Title: {doc.metadata['Title']}**\n\nAbstract: {doc.metadata['Summary']}\n\n"
|
64 |
output = stuff_chain({"input_documents": relevant_docs, "context": user_query})
|
65 |
output_text = output["output_text"].split("<|end|>")[0]
|
66 |
print("LLM output:", output_text)
|
67 |
-
return f"# Your AI curated newsletter\n{
|
68 |
|
69 |
with gr.Blocks() as demo:
|
70 |
gr.Markdown(
|
|
|
19 |
input_variables=["page_content", "Title"],
|
20 |
)
|
21 |
prompt = PromptTemplate(
|
22 |
+
template="""Write an engaging newsletter on the most recent exciting developments in the following field:"{context}". Base the newsletter on the articles below. Extract the most exciting points and combine them into an excillerating newsletter. Use emojis to catch attention and use the Markdown format.\n\n#ARTICLES\n"{text}"\n\nNEWSLETTER:\n# AI curated newsletter\n""",
|
23 |
input_variables=["context", "text"])
|
24 |
|
25 |
REPO_ID = "HuggingFaceH4/starchat-beta"
|
26 |
llm = HuggingFaceHub(
|
27 |
repo_id=REPO_ID,
|
28 |
model_kwargs={
|
29 |
+
"max_new_tokens": 400,
|
30 |
"do_sample": True,
|
31 |
"temperature": 0.8,
|
32 |
"top_p": 0.9
|
|
|
52 |
min_date = (max_date - timedelta(days=lookback_days))
|
53 |
query = f"cat:hep-th AND submittedDate:[{min_date.strftime('%Y%m%d')} TO {max_date.strftime('%Y%m%d')}]"
|
54 |
loader = ArxivLoader(query=query, load_max_docs=LOAD_MAX_DOCS)
|
55 |
+
docs = [process_document(doc) for doc in loader.load()]
|
|
|
56 |
db = Chroma.from_documents(docs, embeddings)
|
57 |
retriever = db.as_retriever()
|
58 |
relevant_docs = retriever.get_relevant_documents(user_query)
|
59 |
print(relevant_docs[0].metadata)
|
60 |
articles = ""
|
61 |
for doc in relevant_docs:
|
62 |
+
articles += f"**Title: {doc.metadata['Title']}**\n\nAuthors: {doc.metadata['Authors']}\n\nAbstract: {doc.metadata['Summary']}\n\n"
|
63 |
output = stuff_chain({"input_documents": relevant_docs, "context": user_query})
|
64 |
output_text = output["output_text"].split("<|end|>")[0]
|
65 |
print("LLM output:", output_text)
|
66 |
+
return f"# Your AI curated newsletter\n{output_text}\n\n\n\n## Filtered {len(docs)} articles down to the following relevant articles:\n\n{articles}"
|
67 |
|
68 |
with gr.Blocks() as demo:
|
69 |
gr.Markdown(
|