vineeth N
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,277 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# from typing import List
|
3 |
+
# from dotenv import load_dotenv
|
4 |
+
# import chainlit as cl
|
5 |
+
# from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
# from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
+
# from langchain_community.vectorstores import FAISS
|
8 |
+
# from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
# from langchain.chains import RetrievalQA
|
10 |
+
# from langchain_groq import ChatGroq
|
11 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
12 |
+
|
13 |
+
# # Load environment variables
|
14 |
+
# load_dotenv()
|
15 |
+
|
16 |
+
# # Initialize embedding model
|
17 |
+
# # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
18 |
+
|
19 |
+
# openai.api_key = os.getenv("OPENAI_API_KEY")
|
20 |
+
|
21 |
+
# # Initialize embedding model using OpenAI
|
22 |
+
# embeddings = OpenAIEmbeddings(openai_api_key=openai.api_key,model="text-embedding-3-small")
|
23 |
+
|
24 |
+
|
25 |
+
# # Initialize vector store
|
26 |
+
# vector_store = None
|
27 |
+
|
28 |
+
# # Store PDF file paths
|
29 |
+
# pdf_files = {}
|
30 |
+
|
31 |
+
# # Define the path for the FAISS index
|
32 |
+
# FAISS_INDEX_PATH = "faiss_index"
|
33 |
+
|
34 |
+
# def process_pdfs(directory: str) -> None:
|
35 |
+
# """Process all PDFs in the given directory and add them to the vector store."""
|
36 |
+
# global vector_store, pdf_files
|
37 |
+
# documents = []
|
38 |
+
|
39 |
+
# for filename in os.listdir(directory):
|
40 |
+
# if filename.endswith(".pdf"):
|
41 |
+
# file_path = os.path.join(directory, filename)
|
42 |
+
# loader = PyPDFLoader(file_path)
|
43 |
+
# documents.extend(loader.load())
|
44 |
+
# pdf_files[filename] = file_path
|
45 |
+
|
46 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
47 |
+
# texts = text_splitter.split_documents(documents)
|
48 |
+
|
49 |
+
# if os.path.exists(FAISS_INDEX_PATH):
|
50 |
+
# vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
51 |
+
# vector_store.add_documents(texts)
|
52 |
+
# else:
|
53 |
+
# vector_store = FAISS.from_documents(texts, embeddings)
|
54 |
+
|
55 |
+
# # Save the updated vector store
|
56 |
+
# vector_store.save_local(FAISS_INDEX_PATH)
|
57 |
+
# @cl.on_chat_start
|
58 |
+
# async def start():
|
59 |
+
# """Initialize the chat session."""
|
60 |
+
# await cl.Message(content="Welcome! Processing PDFs...").send()
|
61 |
+
|
62 |
+
# # Process PDFs (replace with your PDF directory)
|
63 |
+
# process_pdfs(r"C:\Users\sumes\OneDrive\Documents\pdf_docs")
|
64 |
+
|
65 |
+
# await cl.Message(content="PDFs processed. You can now ask questions!").send()
|
66 |
+
|
67 |
+
# @cl.on_message
|
68 |
+
# async def main(message: cl.Message):
|
69 |
+
# """Handle user messages and generate responses."""
|
70 |
+
# if vector_store is None:
|
71 |
+
# await cl.Message(content="Error: Vector store not initialized.").send()
|
72 |
+
# return
|
73 |
+
|
74 |
+
# query = message.content
|
75 |
+
|
76 |
+
# retriever = vector_store.as_retriever(search_kwargs={"k": 1})
|
77 |
+
|
78 |
+
# llm = OpenAI(openai_api_key=openai.api_key, model="gpt-4o-mini", temperature=0.4)
|
79 |
+
|
80 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
81 |
+
# llm=llm,
|
82 |
+
# chain_type="stuff",
|
83 |
+
# retriever=retriever,
|
84 |
+
# return_source_documents=True
|
85 |
+
# )
|
86 |
+
|
87 |
+
# result = qa_chain(query)
|
88 |
+
# answer = result['result']
|
89 |
+
# source_docs = result['source_documents']
|
90 |
+
|
91 |
+
# await cl.Message(content=answer).send()
|
92 |
+
|
93 |
+
# if source_docs:
|
94 |
+
# sources_message = "Sources:\n"
|
95 |
+
# for doc in source_docs:
|
96 |
+
# file_name = os.path.basename(doc.metadata['source'])
|
97 |
+
# if file_name in pdf_files:
|
98 |
+
# file_path = pdf_files[file_name]
|
99 |
+
# elements = [
|
100 |
+
# cl.Text(name=file_name, content=f"Source: {file_name}"),
|
101 |
+
# cl.File(name=file_name, path=file_path, display="inline")
|
102 |
+
# ]
|
103 |
+
# await cl.Message(content=f"Source: {file_name}", elements=elements).send()
|
104 |
+
# else:
|
105 |
+
# sources_message += f"- {doc.metadata['source']}\n"
|
106 |
+
|
107 |
+
# if sources_message != "Sources:\n":
|
108 |
+
# await cl.Message(content=sources_message).send()
|
109 |
+
|
110 |
+
# if __name__ == "__main__":
|
111 |
+
# cl.run()
|
112 |
+
|
113 |
+
import os
|
114 |
+
from typing import List
|
115 |
+
from dotenv import load_dotenv
|
116 |
+
import chainlit as cl
|
117 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
118 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
119 |
+
from langchain_community.vectorstores import FAISS
|
120 |
+
from langchain_community.document_loaders import PyPDFLoader
|
121 |
+
from langchain.chains import RetrievalQA
|
122 |
+
from langchain_openai import ChatOpenAI
|
123 |
+
from langchain_openai import OpenAIEmbeddings
|
124 |
+
|
125 |
+
# Load environment variables
|
126 |
+
load_dotenv()
|
127 |
+
|
128 |
+
# Initialize OpenAI API key
|
129 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
130 |
+
|
131 |
+
# Initialize embedding model using OpenAI
|
132 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key,model="text-embedding-3-small")
|
133 |
+
|
134 |
+
# Initialize vector store
|
135 |
+
vector_store = None
|
136 |
+
|
137 |
+
# Store PDF file paths
|
138 |
+
pdf_files = {}
|
139 |
+
|
140 |
+
# Define the path for the FAISS index
|
141 |
+
FAISS_INDEX_PATH = "faiss_index"
|
142 |
+
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")
|
143 |
+
|
144 |
+
def process_pdfs(directory: str) -> None:
|
145 |
+
"""Process all PDFs in the given directory and add them to the vector store."""
|
146 |
+
global vector_store, pdf_files
|
147 |
+
documents = []
|
148 |
+
|
149 |
+
for filename in os.listdir(directory):
|
150 |
+
if filename.endswith(".pdf"):
|
151 |
+
file_path = os.path.join(directory, filename)
|
152 |
+
loader = PyPDFLoader(file_path)
|
153 |
+
documents.extend(loader.load())
|
154 |
+
pdf_files[filename] = file_path
|
155 |
+
|
156 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
157 |
+
texts = text_splitter.split_documents(documents)
|
158 |
+
|
159 |
+
if os.path.exists(FAISS_INDEX_FILE):
|
160 |
+
try:
|
161 |
+
vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
162 |
+
vector_store.add_documents(texts)
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error loading FAISS index: {e}")
|
165 |
+
vector_store = FAISS.from_documents(texts, embeddings)
|
166 |
+
else:
|
167 |
+
vector_store = FAISS.from_documents(texts, embeddings)
|
168 |
+
|
169 |
+
# Save the updated vector store
|
170 |
+
if not os.path.exists(FAISS_INDEX_PATH):
|
171 |
+
os.makedirs(FAISS_INDEX_PATH)
|
172 |
+
vector_store.save_local(FAISS_INDEX_PATH)
|
173 |
+
|
174 |
+
@cl.on_chat_start
|
175 |
+
async def start():
|
176 |
+
"""Initialize the chat session."""
|
177 |
+
await cl.Message(content="Welcome! Processing PDFs...").send()
|
178 |
+
|
179 |
+
# Process PDFs (replace with your PDF directory)
|
180 |
+
process_pdfs(r"C:\Users\sumes\OneDrive\Documents\pdf_docs")
|
181 |
+
|
182 |
+
await cl.Message(content="PDFs processed. You can now ask questions!").send()
|
183 |
+
|
184 |
+
# @cl.on_message
|
185 |
+
# async def main(message: cl.Message):
|
186 |
+
# """Handle user messages and generate responses."""
|
187 |
+
# if vector_store is None:
|
188 |
+
# await cl.Message(content="Error: Vector store not initialized.").send()
|
189 |
+
# return
|
190 |
+
|
191 |
+
# query = message.content
|
192 |
+
|
193 |
+
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
194 |
+
|
195 |
+
# # Initialize the OpenAI language model
|
196 |
+
# llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4o-mini", temperature=0)
|
197 |
+
|
198 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
199 |
+
# llm=llm,
|
200 |
+
# chain_type="stuff",
|
201 |
+
# retriever=retriever,
|
202 |
+
# return_source_documents=True
|
203 |
+
# )
|
204 |
+
|
205 |
+
# result = qa_chain(query)
|
206 |
+
# answer = result['result']
|
207 |
+
# source_docs = result['source_documents']
|
208 |
+
|
209 |
+
# await cl.Message(content=answer).send()
|
210 |
+
|
211 |
+
# if source_docs:
|
212 |
+
# sources_message = "Sources:\n"
|
213 |
+
# for doc in source_docs:
|
214 |
+
# file_name = os.path.basename(doc.metadata['source'])
|
215 |
+
# if file_name in pdf_files:
|
216 |
+
# file_path = pdf_files[file_name]
|
217 |
+
# elements = [
|
218 |
+
# cl.Text(name=file_name, content=f"Source: {file_name}"),
|
219 |
+
# cl.File(name=file_name, path=file_path, display="inline")
|
220 |
+
# ]
|
221 |
+
# await cl.Message(content=f"Source: {file_name}", elements=elements).send()
|
222 |
+
# else:
|
223 |
+
# sources_message += f"- {doc.metadata['source']}\n"
|
224 |
+
|
225 |
+
# if sources_message != "Sources:\n":
|
226 |
+
# await cl.Message(content=sources_message).send()
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
@cl.on_message
|
231 |
+
async def main(message: cl.Message):
|
232 |
+
"""Handle user messages and generate responses."""
|
233 |
+
if vector_store is None:
|
234 |
+
await cl.Message(content="Error: Vector store not initialized.").send()
|
235 |
+
return
|
236 |
+
|
237 |
+
query = message.content
|
238 |
+
|
239 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
240 |
+
|
241 |
+
# Initialize the OpenAI language model
|
242 |
+
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4o-mini", temperature=0)
|
243 |
+
|
244 |
+
qa_chain = RetrievalQA.from_chain_type(
|
245 |
+
llm=llm,
|
246 |
+
chain_type="stuff",
|
247 |
+
retriever=retriever,
|
248 |
+
return_source_documents=True
|
249 |
+
)
|
250 |
+
|
251 |
+
result = qa_chain(query)
|
252 |
+
answer = result['result']
|
253 |
+
source_docs = result['source_documents']
|
254 |
+
|
255 |
+
await cl.Message(content=answer).send()
|
256 |
+
|
257 |
+
if source_docs:
|
258 |
+
unique_sources = set()
|
259 |
+
for doc in source_docs:
|
260 |
+
file_name = os.path.basename(doc.metadata['source'])
|
261 |
+
if file_name in pdf_files and file_name not in unique_sources:
|
262 |
+
unique_sources.add(file_name)
|
263 |
+
file_path = pdf_files[file_name]
|
264 |
+
elements = [
|
265 |
+
cl.Text(name=file_name, content=f"Source: {file_name}"),
|
266 |
+
cl.File(name=file_name, path=file_path, display="inline")
|
267 |
+
]
|
268 |
+
await cl.Message(content=f"Source: {file_name}", elements=elements).send()
|
269 |
+
|
270 |
+
other_sources = [doc.metadata['source'] for doc in source_docs if os.path.basename(doc.metadata['source']) not in pdf_files]
|
271 |
+
unique_other_sources = set(other_sources)
|
272 |
+
if unique_other_sources:
|
273 |
+
sources_message = "Other Sources:\n" + "\n".join(f"- {source}" for source in unique_other_sources)
|
274 |
+
await cl.Message(content=sources_message).send()
|
275 |
+
|
276 |
+
if __name__ == "__main__":
|
277 |
+
cl.run()
|