vineeth N
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
|
|
2 |
from typing import List
|
3 |
from dotenv import load_dotenv
|
4 |
-
import chainlit as cl
|
5 |
from langchain_community.embeddings import OpenAIEmbeddings
|
6 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
@@ -14,10 +14,10 @@ from langchain_openai import OpenAIEmbeddings
|
|
14 |
load_dotenv()
|
15 |
|
16 |
# Initialize OpenAI API key
|
17 |
-
openai_api_key = os.getenv('
|
18 |
|
19 |
# Initialize embedding model using OpenAI
|
20 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key,model="text-embedding-3-small")
|
21 |
|
22 |
# Initialize vector store
|
23 |
vector_store = None
|
@@ -29,6 +29,7 @@ pdf_files = {}
|
|
29 |
FAISS_INDEX_PATH = "faiss_index"
|
30 |
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")
|
31 |
|
|
|
32 |
def process_pdfs(directory: str) -> None:
|
33 |
"""Process all PDFs in the given directory and add them to the vector store."""
|
34 |
global vector_store, pdf_files
|
@@ -49,7 +50,7 @@ def process_pdfs(directory: str) -> None:
|
|
49 |
vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
50 |
vector_store.add_documents(texts)
|
51 |
except Exception as e:
|
52 |
-
|
53 |
vector_store = FAISS.from_documents(texts, embeddings)
|
54 |
else:
|
55 |
vector_store = FAISS.from_documents(texts, embeddings)
|
@@ -59,60 +60,64 @@ def process_pdfs(directory: str) -> None:
|
|
59 |
os.makedirs(FAISS_INDEX_PATH)
|
60 |
vector_store.save_local(FAISS_INDEX_PATH)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import streamlit as st
|
3 |
from typing import List
|
4 |
from dotenv import load_dotenv
|
|
|
5 |
from langchain_community.embeddings import OpenAIEmbeddings
|
6 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
|
|
14 |
load_dotenv()
|
15 |
|
16 |
# Initialize OpenAI API key
|
17 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
18 |
|
19 |
# Initialize embedding model using OpenAI
|
20 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
|
21 |
|
22 |
# Initialize vector store
|
23 |
vector_store = None
|
|
|
29 |
FAISS_INDEX_PATH = "faiss_index"
|
30 |
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")
|
31 |
|
32 |
+
@st.cache_resource
|
33 |
def process_pdfs(directory: str) -> None:
|
34 |
"""Process all PDFs in the given directory and add them to the vector store."""
|
35 |
global vector_store, pdf_files
|
|
|
50 |
vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
51 |
vector_store.add_documents(texts)
|
52 |
except Exception as e:
|
53 |
+
st.error(f"Error loading FAISS index: {e}")
|
54 |
vector_store = FAISS.from_documents(texts, embeddings)
|
55 |
else:
|
56 |
vector_store = FAISS.from_documents(texts, embeddings)
|
|
|
60 |
os.makedirs(FAISS_INDEX_PATH)
|
61 |
vector_store.save_local(FAISS_INDEX_PATH)
|
62 |
|
63 |
+
def main():
|
64 |
+
st.title("PDF Question Answering System")
|
65 |
+
|
66 |
+
# Process PDFs
|
67 |
+
pdf_directory = "/path/to/your/pdf/directory" # Update this path
|
68 |
+
process_pdfs(pdf_directory)
|
69 |
+
|
70 |
+
st.success("PDFs processed. You can now ask questions!")
|
71 |
+
|
72 |
+
# User input
|
73 |
+
user_question = st.text_input("Ask a question about the PDFs:")
|
74 |
+
|
75 |
+
if user_question:
|
76 |
+
if vector_store is None:
|
77 |
+
st.error("Error: Vector store not initialized.")
|
78 |
+
return
|
79 |
+
|
80 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
81 |
+
|
82 |
+
# Initialize the OpenAI language model
|
83 |
+
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4o-mini", temperature=0)
|
84 |
+
|
85 |
+
qa_chain = RetrievalQA.from_chain_type(
|
86 |
+
llm=llm,
|
87 |
+
chain_type="stuff",
|
88 |
+
retriever=retriever,
|
89 |
+
return_source_documents=True
|
90 |
+
)
|
91 |
+
|
92 |
+
result = qa_chain(user_question)
|
93 |
+
answer = result['result']
|
94 |
+
source_docs = result['source_documents']
|
95 |
+
|
96 |
+
st.write("Answer:", answer)
|
97 |
+
|
98 |
+
if source_docs:
|
99 |
+
st.subheader("Sources:")
|
100 |
+
unique_sources = set()
|
101 |
+
for doc in source_docs:
|
102 |
+
file_name = os.path.basename(doc.metadata['source'])
|
103 |
+
if file_name in pdf_files and file_name not in unique_sources:
|
104 |
+
unique_sources.add(file_name)
|
105 |
+
file_path = pdf_files[file_name]
|
106 |
+
st.write(f"Source: {file_name}")
|
107 |
+
with open(file_path, "rb") as file:
|
108 |
+
st.download_button(
|
109 |
+
label=f"Download {file_name}",
|
110 |
+
data=file,
|
111 |
+
file_name=file_name,
|
112 |
+
mime="application/pdf"
|
113 |
+
)
|
114 |
+
|
115 |
+
other_sources = [doc.metadata['source'] for doc in source_docs if os.path.basename(doc.metadata['source']) not in pdf_files]
|
116 |
+
unique_other_sources = set(other_sources)
|
117 |
+
if unique_other_sources:
|
118 |
+
st.subheader("Other Sources:")
|
119 |
+
for source in unique_other_sources:
|
120 |
+
st.write(f"- {source}")
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
main()
|