import streamlit as st from langchain_groq import ChatGroq from langchain.schema import HumanMessage, AIMessage GROQ_API_KEY='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' # Initialize the ChatGroq model llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=GROQ_API_KEY) st.title("LLM Bot with ChatGroq") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # React to user input if prompt := st.chat_input("What is your question?"): # Display user message in chat message container st.chat_message("user").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Generate AI response response = llm([HumanMessage(content=prompt)]) # Display AI response in chat message container with st.chat_message("assistant"): st.markdown(response.content) # Add AI response to chat history st.session_state.messages.append({"role": "assistant", "content": response.content})