Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +9 -51
- home.py +11 -0
- introduction.md +2 -0
- text2image.py +74 -0
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import requests
|
7 |
import transformers
|
|
|
8 |
import tokenizers
|
9 |
from io import BytesIO
|
10 |
import streamlit as st
|
@@ -18,55 +19,12 @@ from transformers import (
|
|
18 |
)
|
19 |
from transformers import AutoProcessor
|
20 |
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
input_ids=input_ids, attention_mask=attention_mask
|
30 |
-
)
|
31 |
-
return embeddings
|
32 |
-
|
33 |
-
@st.cache
|
34 |
-
def load_embeddings(embeddings_path):
|
35 |
-
print("loading embeddings")
|
36 |
-
return np.load(embeddings_path)
|
37 |
-
|
38 |
-
@st.cache(
|
39 |
-
hash_funcs={
|
40 |
-
torch.nn.parameter.Parameter: lambda _: None,
|
41 |
-
tokenizers.Tokenizer: lambda _: None,
|
42 |
-
tokenizers.AddedToken: lambda _: None
|
43 |
-
}
|
44 |
-
)
|
45 |
-
def load_path_clip():
|
46 |
-
model = CLIPModel.from_pretrained("vinid/plip")
|
47 |
-
processor = AutoProcessor.from_pretrained("vinid/plip")
|
48 |
-
return model, processor
|
49 |
-
|
50 |
-
st.title('PLIP Image Search')
|
51 |
-
|
52 |
-
plip_dataset = pd.read_csv("tweet_eval_retrieval.tsv", sep="\t")
|
53 |
-
|
54 |
-
model, processor = load_path_clip()
|
55 |
-
|
56 |
-
image_embedding = load_embeddings("tweet_eval_embeddings.npy")
|
57 |
-
|
58 |
-
query = st.text_input('Search Query', '')
|
59 |
-
|
60 |
-
|
61 |
-
if query:
|
62 |
-
|
63 |
-
text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
|
64 |
-
|
65 |
-
text_embedding = text_embedding/np.linalg.norm(text_embedding)
|
66 |
-
|
67 |
-
best_id = np.argmax(text_embedding.dot(image_embedding.T))
|
68 |
-
url = (plip_dataset.iloc[best_id]["imageURL"])
|
69 |
-
|
70 |
-
response = requests.get(url)
|
71 |
-
img = Image.open(BytesIO(response.content))
|
72 |
-
st.image(img)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import home
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import requests
|
7 |
import transformers
|
8 |
+
import text2image
|
9 |
import tokenizers
|
10 |
from io import BytesIO
|
11 |
import streamlit as st
|
|
|
19 |
)
|
20 |
from transformers import AutoProcessor
|
21 |
|
22 |
+
st.sidebar.title("Explore our PLIP Demo")
|
23 |
|
24 |
+
PAGES = {
|
25 |
+
"Introduction": home,
|
26 |
+
"Text to Image": text2image,
|
27 |
+
}
|
28 |
|
29 |
+
page = st.sidebar.radio("", list(PAGES.keys()))
|
30 |
+
PAGES[page].app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
home.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
|
5 |
+
def read_markdown_file(markdown_file):
|
6 |
+
return Path(markdown_file).read_text()
|
7 |
+
|
8 |
+
|
9 |
+
def app():
|
10 |
+
intro_markdown = read_markdown_file("introduction.md")
|
11 |
+
st.markdown(intro_markdown, unsafe_allow_html=True)
|
introduction.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Welcome to our PLIP Demo
|
text2image.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from plip_support import embed_text
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
import transformers
|
8 |
+
import tokenizers
|
9 |
+
from io import BytesIO
|
10 |
+
import streamlit as st
|
11 |
+
from transformers import CLIPModel
|
12 |
+
import clip
|
13 |
+
import torch
|
14 |
+
from transformers import (
|
15 |
+
VisionTextDualEncoderModel,
|
16 |
+
AutoFeatureExtractor,
|
17 |
+
AutoTokenizer
|
18 |
+
)
|
19 |
+
from transformers import AutoProcessor
|
20 |
+
|
21 |
+
|
22 |
+
def embed_texts(model, texts, processor):
|
23 |
+
inputs = processor(text=texts, padding="longest")
|
24 |
+
input_ids = torch.tensor(inputs["input_ids"])
|
25 |
+
attention_mask = torch.tensor(inputs["attention_mask"])
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
embeddings = model.get_text_features(
|
29 |
+
input_ids=input_ids, attention_mask=attention_mask
|
30 |
+
)
|
31 |
+
return embeddings
|
32 |
+
|
33 |
+
@st.cache
|
34 |
+
def load_embeddings(embeddings_path):
|
35 |
+
print("loading embeddings")
|
36 |
+
return np.load(embeddings_path)
|
37 |
+
|
38 |
+
@st.cache(
|
39 |
+
hash_funcs={
|
40 |
+
torch.nn.parameter.Parameter: lambda _: None,
|
41 |
+
tokenizers.Tokenizer: lambda _: None,
|
42 |
+
tokenizers.AddedToken: lambda _: None
|
43 |
+
}
|
44 |
+
)
|
45 |
+
def load_path_clip():
|
46 |
+
model = CLIPModel.from_pretrained("vinid/plip")
|
47 |
+
processor = AutoProcessor.from_pretrained("vinid/plip")
|
48 |
+
return model, processor
|
49 |
+
|
50 |
+
|
51 |
+
def app():
|
52 |
+
st.title('PLIP Image Search')
|
53 |
+
|
54 |
+
plip_dataset = pd.read_csv("tweet_eval_retrieval.tsv", sep="\t")
|
55 |
+
|
56 |
+
model, processor = load_path_clip()
|
57 |
+
|
58 |
+
image_embedding = load_embeddings("tweet_eval_embeddings.npy")
|
59 |
+
|
60 |
+
query = st.text_input('Search Query', '')
|
61 |
+
|
62 |
+
|
63 |
+
if query:
|
64 |
+
|
65 |
+
text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
|
66 |
+
|
67 |
+
text_embedding = text_embedding/np.linalg.norm(text_embedding)
|
68 |
+
|
69 |
+
best_id = np.argmax(text_embedding.dot(image_embedding.T))
|
70 |
+
url = (plip_dataset.iloc[best_id]["imageURL"])
|
71 |
+
|
72 |
+
response = requests.get(url)
|
73 |
+
img = Image.open(BytesIO(response.content))
|
74 |
+
st.image(img)
|