Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +63 -0
- tweet_eval_embeddings.npy +3 -0
- tweet_eval_retrieval.tsv +0 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from plip_support import embed_text
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
import streamlit as st
|
9 |
+
import clip
|
10 |
+
import torch
|
11 |
+
from transformers import (
|
12 |
+
VisionTextDualEncoderModel,
|
13 |
+
AutoFeatureExtractor,
|
14 |
+
AutoTokenizer
|
15 |
+
)
|
16 |
+
from transformers import AutoProcessor
|
17 |
+
|
18 |
+
|
19 |
+
def embed_texts(model, texts, processor):
|
20 |
+
inputs = processor(text=texts, padding="longest")
|
21 |
+
input_ids = torch.tensor(inputs["input_ids"])
|
22 |
+
attention_mask = torch.tensor(inputs["attention_mask"])
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
embeddings = model.get_text_features(
|
26 |
+
input_ids=input_ids, attention_mask=attention_mask
|
27 |
+
)
|
28 |
+
return embeddings
|
29 |
+
|
30 |
+
@st.cache_resource
|
31 |
+
def load_embeddings(embeddings_path):
|
32 |
+
print("loading embeddings")
|
33 |
+
return np.load(embeddings_path)
|
34 |
+
|
35 |
+
@st.cache_resource
|
36 |
+
def load_path_clip():
|
37 |
+
model = VisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian")
|
38 |
+
processor = AutoProcessor.from_pretrained("clip-italian/clip-italian")
|
39 |
+
return model, processor
|
40 |
+
|
41 |
+
st.title('PLIP Image Search')
|
42 |
+
|
43 |
+
plip_dataset = pd.read_csv("tweet_eval_retrieval.tsv", sep="\t")
|
44 |
+
|
45 |
+
model, processor = load_path_clip()
|
46 |
+
|
47 |
+
image_embedding = load_embeddings("tweet_eval_embeddings.npy")
|
48 |
+
|
49 |
+
query = st.text_input('Search Query', '')
|
50 |
+
|
51 |
+
|
52 |
+
if query:
|
53 |
+
|
54 |
+
text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
|
55 |
+
|
56 |
+
text_embedding = text_embedding/np.linalg.norm(text_embedding)
|
57 |
+
|
58 |
+
best_id = np.argmax(text_embedding.dot(image_embedding.T))
|
59 |
+
url = (plip_dataset.iloc[best_id]["imageURL"])
|
60 |
+
|
61 |
+
response = requests.get(url)
|
62 |
+
img = Image.open(BytesIO(response.content))
|
63 |
+
st.image(img)
|
tweet_eval_embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36e445b069b1d937a0a780ddeab9239df5fd13264e8cd1f6cf033be3210352e1
|
3 |
+
size 2401408
|
tweet_eval_retrieval.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|