import streamlit as st import pandas as pd from plip_support import embed_text import numpy as np from PIL import Image import requests import tokenizers import os from io import BytesIO import pickle import base64 import torch from transformers import ( VisionTextDualEncoderModel, AutoFeatureExtractor, AutoTokenizer, CLIPModel, AutoProcessor ) import streamlit.components.v1 as components from st_clickable_images import clickable_images #pip install st-clickable-images def embed_images(model, images, processor): inputs = processor(images=images) pixel_values = torch.tensor(np.array(inputs["pixel_values"])) with torch.no_grad(): embeddings = model.get_image_features(pixel_values=pixel_values) return embeddings @st.cache def load_embeddings(embeddings_path): print("loading embeddings") return np.load(embeddings_path) @st.cache( hash_funcs={ torch.nn.parameter.Parameter: lambda _: None, tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None } ) def load_path_clip(): model = CLIPModel.from_pretrained("vinid/plip") processor = AutoProcessor.from_pretrained("vinid/plip") return model, processor def init(): with open('data/twitter.asset', 'rb') as f: data = pickle.load(f) meta = data['meta'].reset_index(drop=True) image_embedding = data['embedding'] print(meta.shape, image_embedding.shape) validation_subset_index = meta['source'].values == 'Val_Tweets' return meta, image_embedding, validation_subset_index def app(): st.title('Image to Image Retrieval') st.markdown('#### A pathology image search engine that correlate images with images.') meta, image_embedding, validation_subset_index = init() model, processor = load_path_clip() st.markdown('Click following examples:') example_path = 'data/example_images' list_of_examples = [os.path.join(example_path, v) for v in os.listdir(example_path)] example_imgs = [] for file in list_of_examples: with open(file, "rb") as image: encoded = base64.b64encode(image.read()).decode() example_imgs.append(f"data:image/jpeg;base64,{encoded}") clicked = clickable_images( example_imgs, titles=[f"Image #{str(i)}" for i in range(len(example_imgs))], div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"}, img_style={"margin": "5px", "height": "70px"}, ) isExampleClicked = False if clicked > -1: image = Image.open(list_of_examples[clicked]) isExampleClicked = True data_options = ["All twitter data (2006-03-21 — 2023-01-15)", "Twitter validation data (2022-11-16 — 2023-01-15)"] st.radio( "Or choose dataset for image retrieval 👉", key="datapool", options=data_options, ) col1, col2 = st.columns(2) with col1: query = st.file_uploader("Choose a file to upload") proceed = False if query: image = Image.open(query) proceed = True elif isExampleClicked: proceed = True if proceed: with col2: st.image(image, caption='Your upload') single_image = embed_images(model, [image], processor)[0].detach().cpu().numpy() single_image = single_image/np.linalg.norm(single_image) # Sort IDs by cosine-similarity from high to low similarity_scores = single_image.dot(image_embedding.T) topn = 5 if st.session_state.datapool == data_options[0]: #Use all twitter data id_sorted = np.argsort(similarity_scores)[::-1] best_ids = id_sorted[:topn] best_scores = similarity_scores[best_ids] target_weblinks = meta["weblink"].values[best_ids] else: #Use validation twitter data similarity_scores = similarity_scores[validation_subset_index] # Sort IDs by cosine-similarity from high to low id_sorted = np.argsort(similarity_scores)[::-1] best_ids = id_sorted[:topn] best_scores = similarity_scores[best_ids] target_weblinks = meta["weblink"].values[validation_subset_index][best_ids] #TODO: Avoid duplicated ID topk_options = ['1st', '2nd', '3rd', '4th', '5th'] st.radio( "Choose the most similar 👉", key="top_k", options=topk_options, horizontal=True ) topn_txt = st.session_state.top_k topn_value = int(st.session_state.top_k[0])-1 st.caption(f'The {topn_txt} relevant image (similarity = {best_scores[topn_value]:.4f})') components.html('''
''' % target_weblinks[topn_value], height=800) st.markdown('Disclaimer') st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')