Spaces:
Running
on
L4
Running
on
L4
File size: 12,349 Bytes
a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
"""This script defines the parametric 3d face model for Deep3DFaceRecon_pytorch
"""
import numpy as np
import torch
import torch.nn.functional as F
from scipy.io import loadmat
from src.face3d.util.load_mats import transferBFM09
import os
def perspective_projection(focal, center):
# return p.T (N, 3) @ (3, 3)
return np.array([
focal, 0, center,
0, focal, center,
0, 0, 1
]).reshape([3, 3]).astype(np.float32).transpose()
class SH:
def __init__(self):
self.a = [np.pi, 2 * np.pi / np.sqrt(3.), 2 * np.pi / np.sqrt(8.)]
self.c = [1/np.sqrt(4 * np.pi), np.sqrt(3.) / np.sqrt(4 * np.pi), 3 * np.sqrt(5.) / np.sqrt(12 * np.pi)]
class ParametricFaceModel:
def __init__(self,
bfm_folder='./BFM',
recenter=True,
camera_distance=10.,
init_lit=np.array([
0.8, 0, 0, 0, 0, 0, 0, 0, 0
]),
focal=1015.,
center=112.,
is_train=True,
default_name='BFM_model_front.mat'):
if not os.path.isfile(os.path.join(bfm_folder, default_name)):
transferBFM09(bfm_folder)
model = loadmat(os.path.join(bfm_folder, default_name))
# mean face shape. [3*N,1]
self.mean_shape = model['meanshape'].astype(np.float32)
# identity basis. [3*N,80]
self.id_base = model['idBase'].astype(np.float32)
# expression basis. [3*N,64]
self.exp_base = model['exBase'].astype(np.float32)
# mean face texture. [3*N,1] (0-255)
self.mean_tex = model['meantex'].astype(np.float32)
# texture basis. [3*N,80]
self.tex_base = model['texBase'].astype(np.float32)
# face indices for each vertex that lies in. starts from 0. [N,8]
self.point_buf = model['point_buf'].astype(np.int64) - 1
# vertex indices for each face. starts from 0. [F,3]
self.face_buf = model['tri'].astype(np.int64) - 1
# vertex indices for 68 landmarks. starts from 0. [68,1]
self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1
if is_train:
# vertex indices for small face region to compute photometric error. starts from 0.
self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1
# vertex indices for each face from small face region. starts from 0. [f,3]
self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1
# vertex indices for pre-defined skin region to compute reflectance loss
self.skin_mask = np.squeeze(model['skinmask'])
if recenter:
mean_shape = self.mean_shape.reshape([-1, 3])
mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True)
self.mean_shape = mean_shape.reshape([-1, 1])
self.persc_proj = perspective_projection(focal, center)
self.device = 'cpu'
self.camera_distance = camera_distance
self.SH = SH()
self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32)
def to(self, device):
self.device = device
for key, value in self.__dict__.items():
if type(value).__module__ == np.__name__:
setattr(self, key, torch.tensor(value).to(device))
def compute_shape(self, id_coeff, exp_coeff):
"""
Return:
face_shape -- torch.tensor, size (B, N, 3)
Parameters:
id_coeff -- torch.tensor, size (B, 80), identity coeffs
exp_coeff -- torch.tensor, size (B, 64), expression coeffs
"""
batch_size = id_coeff.shape[0]
id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff)
exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff)
face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1])
return face_shape.reshape([batch_size, -1, 3])
def compute_texture(self, tex_coeff, normalize=True):
"""
Return:
face_texture -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.)
Parameters:
tex_coeff -- torch.tensor, size (B, 80)
"""
batch_size = tex_coeff.shape[0]
face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex
if normalize:
face_texture = face_texture / 255.
return face_texture.reshape([batch_size, -1, 3])
def compute_norm(self, face_shape):
"""
Return:
vertex_norm -- torch.tensor, size (B, N, 3)
Parameters:
face_shape -- torch.tensor, size (B, N, 3)
"""
v1 = face_shape[:, self.face_buf[:, 0]]
v2 = face_shape[:, self.face_buf[:, 1]]
v3 = face_shape[:, self.face_buf[:, 2]]
e1 = v1 - v2
e2 = v2 - v3
face_norm = torch.cross(e1, e2, dim=-1)
face_norm = F.normalize(face_norm, dim=-1, p=2)
face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1)
vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2)
vertex_norm = F.normalize(vertex_norm, dim=-1, p=2)
return vertex_norm
def compute_color(self, face_texture, face_norm, gamma):
"""
Return:
face_color -- torch.tensor, size (B, N, 3), range (0, 1.)
Parameters:
face_texture -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.)
face_norm -- torch.tensor, size (B, N, 3), rotated face normal
gamma -- torch.tensor, size (B, 27), SH coeffs
"""
batch_size = gamma.shape[0]
v_num = face_texture.shape[1]
a, c = self.SH.a, self.SH.c
gamma = gamma.reshape([batch_size, 3, 9])
gamma = gamma + self.init_lit
gamma = gamma.permute(0, 2, 1)
Y = torch.cat([
a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device),
-a[1] * c[1] * face_norm[..., 1:2],
a[1] * c[1] * face_norm[..., 2:],
-a[1] * c[1] * face_norm[..., :1],
a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2],
-a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:],
0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1),
-a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:],
0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2 - face_norm[..., 1:2] ** 2)
], dim=-1)
r = Y @ gamma[..., :1]
g = Y @ gamma[..., 1:2]
b = Y @ gamma[..., 2:]
face_color = torch.cat([r, g, b], dim=-1) * face_texture
return face_color
def compute_rotation(self, angles):
"""
Return:
rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat
Parameters:
angles -- torch.tensor, size (B, 3), radian
"""
batch_size = angles.shape[0]
ones = torch.ones([batch_size, 1]).to(self.device)
zeros = torch.zeros([batch_size, 1]).to(self.device)
x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:],
rot_x = torch.cat([
ones, zeros, zeros,
zeros, torch.cos(x), -torch.sin(x),
zeros, torch.sin(x), torch.cos(x)
], dim=1).reshape([batch_size, 3, 3])
rot_y = torch.cat([
torch.cos(y), zeros, torch.sin(y),
zeros, ones, zeros,
-torch.sin(y), zeros, torch.cos(y)
], dim=1).reshape([batch_size, 3, 3])
rot_z = torch.cat([
torch.cos(z), -torch.sin(z), zeros,
torch.sin(z), torch.cos(z), zeros,
zeros, zeros, ones
], dim=1).reshape([batch_size, 3, 3])
rot = rot_z @ rot_y @ rot_x
return rot.permute(0, 2, 1)
def to_camera(self, face_shape):
face_shape[..., -1] = self.camera_distance - face_shape[..., -1]
return face_shape
def to_image(self, face_shape):
"""
Return:
face_proj -- torch.tensor, size (B, N, 2), y direction is opposite to v direction
Parameters:
face_shape -- torch.tensor, size (B, N, 3)
"""
# to image_plane
face_proj = face_shape @ self.persc_proj
face_proj = face_proj[..., :2] / face_proj[..., 2:]
return face_proj
def transform(self, face_shape, rot, trans):
"""
Return:
face_shape -- torch.tensor, size (B, N, 3) pts @ rot + trans
Parameters:
face_shape -- torch.tensor, size (B, N, 3)
rot -- torch.tensor, size (B, 3, 3)
trans -- torch.tensor, size (B, 3)
"""
return face_shape @ rot + trans.unsqueeze(1)
def get_landmarks(self, face_proj):
"""
Return:
face_lms -- torch.tensor, size (B, 68, 2)
Parameters:
face_proj -- torch.tensor, size (B, N, 2)
"""
return face_proj[:, self.keypoints]
def split_coeff(self, coeffs):
"""
Return:
coeffs_dict -- a dict of torch.tensors
Parameters:
coeffs -- torch.tensor, size (B, 256)
"""
id_coeffs = coeffs[:, :80]
exp_coeffs = coeffs[:, 80: 144]
tex_coeffs = coeffs[:, 144: 224]
angles = coeffs[:, 224: 227]
gammas = coeffs[:, 227: 254]
translations = coeffs[:, 254:]
return {
'id': id_coeffs,
'exp': exp_coeffs,
'tex': tex_coeffs,
'angle': angles,
'gamma': gammas,
'trans': translations
}
def compute_for_render(self, coeffs):
"""
Return:
face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate
face_color -- torch.tensor, size (B, N, 3), in RGB order
landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction
Parameters:
coeffs -- torch.tensor, size (B, 257)
"""
coef_dict = self.split_coeff(coeffs)
face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp'])
rotation = self.compute_rotation(coef_dict['angle'])
face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans'])
face_vertex = self.to_camera(face_shape_transformed)
face_proj = self.to_image(face_vertex)
landmark = self.get_landmarks(face_proj)
face_texture = self.compute_texture(coef_dict['tex'])
face_norm = self.compute_norm(face_shape)
face_norm_roted = face_norm @ rotation
face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma'])
return face_vertex, face_texture, face_color, landmark
def compute_for_render_woRotation(self, coeffs):
"""
Return:
face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate
face_color -- torch.tensor, size (B, N, 3), in RGB order
landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction
Parameters:
coeffs -- torch.tensor, size (B, 257)
"""
coef_dict = self.split_coeff(coeffs)
face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp'])
#rotation = self.compute_rotation(coef_dict['angle'])
#face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans'])
face_vertex = self.to_camera(face_shape)
face_proj = self.to_image(face_vertex)
landmark = self.get_landmarks(face_proj)
face_texture = self.compute_texture(coef_dict['tex'])
face_norm = self.compute_norm(face_shape)
face_norm_roted = face_norm # @ rotation
face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma'])
return face_vertex, face_texture, face_color, landmark
if __name__ == '__main__':
transferBFM09() |