File size: 6,118 Bytes
0ce42bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7bb0b
0ce42bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7bb0b
0ce42bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86a2b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch, uuid
import os, sys, shutil
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff  
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data

from pydub import AudioSegment

def mp3_to_wav(mp3_filename,wav_filename,frame_rate):
    mp3_file = AudioSegment.from_file(file=mp3_filename)
    mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav")


class SadTalker():

    def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False):

        if torch.cuda.is_available() :
            device = "cuda"
        else:
            device = "cpu"
        
        self.device = device

        os.environ['TORCH_HOME']= checkpoint_path

        self.checkpoint_path = checkpoint_path
        self.config_path = config_path

        self.path_of_lm_croper = os.path.join( checkpoint_path, 'shape_predictor_68_face_landmarks.dat')
        self.path_of_net_recon_model = os.path.join( checkpoint_path, 'epoch_20.pth')
        self.dir_of_BFM_fitting = os.path.join( checkpoint_path, 'BFM_Fitting')
        self.wav2lip_checkpoint = os.path.join( checkpoint_path, 'wav2lip.pth')

        self.audio2pose_checkpoint = os.path.join( checkpoint_path, 'auido2pose_00140-model.pth')
        self.audio2pose_yaml_path = os.path.join( config_path, 'auido2pose.yaml')
    
        self.audio2exp_checkpoint = os.path.join( checkpoint_path, 'auido2exp_00300-model.pth')
        self.audio2exp_yaml_path = os.path.join( config_path, 'auido2exp.yaml')

        self.free_view_checkpoint = os.path.join( checkpoint_path, 'facevid2vid_00189-model.pth.tar')

        self.lazy_load = lazy_load

        if not self.lazy_load:
            #init model
            print(self.path_of_lm_croper)
            self.preprocess_model = CropAndExtract(self.path_of_lm_croper, self.path_of_net_recon_model, self.dir_of_BFM_fitting, self.device)

            print(self.audio2pose_checkpoint)
            self.audio_to_coeff = Audio2Coeff(self.audio2pose_checkpoint, self.audio2pose_yaml_path, 
                                    self.audio2exp_checkpoint, self.audio2exp_yaml_path, self.wav2lip_checkpoint, self.device)

    def test(self, source_image, driven_audio, preprocess='crop', still_mode=False, use_enhancer=False, result_dir='./results/'):

        ### crop: only model,

        if self.lazy_load:
            #init model
            print(self.path_of_lm_croper)
            self.preprocess_model = CropAndExtract(self.path_of_lm_croper, self.path_of_net_recon_model, self.dir_of_BFM_fitting, self.device)

            print(self.audio2pose_checkpoint)
            self.audio_to_coeff = Audio2Coeff(self.audio2pose_checkpoint, self.audio2pose_yaml_path, 
                                    self.audio2exp_checkpoint, self.audio2exp_yaml_path, self.wav2lip_checkpoint, self.device)
        
        if preprocess == 'full': 
            self.mapping_checkpoint = os.path.join(self.checkpoint_path, 'mapping_00109-model.pth.tar')
            self.facerender_yaml_path = os.path.join(self.config_path, 'facerender_still.yaml')
        else:
            self.mapping_checkpoint = os.path.join(self.checkpoint_path, 'mapping_00229-model.pth.tar')
            self.facerender_yaml_path = os.path.join(self.config_path, 'facerender.yaml')

        print(self.mapping_checkpoint)
        print(self.free_view_checkpoint)
        self.animate_from_coeff = AnimateFromCoeff(self.free_view_checkpoint, self.mapping_checkpoint, 
                                            self.facerender_yaml_path, self.device)

        time_tag = str(uuid.uuid4())
        save_dir = os.path.join(result_dir, time_tag)
        os.makedirs(save_dir, exist_ok=True)

        input_dir = os.path.join(save_dir, 'input')
        os.makedirs(input_dir, exist_ok=True)

        print(source_image)
        pic_path = os.path.join(input_dir, os.path.basename(source_image)) 
        shutil.move(source_image, input_dir)

        if os.path.isfile(driven_audio):
            audio_path = os.path.join(input_dir, os.path.basename(driven_audio))  

            #### mp3 to wav
            if '.mp3' in audio_path:
                mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
                audio_path = audio_path.replace('.mp3', '.wav')
            else:
                shutil.move(driven_audio, input_dir)
        else:
            raise AttributeError("error audio")


        os.makedirs(save_dir, exist_ok=True)
        pose_style = 0
        #crop image and extract 3dmm from image
        first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
        os.makedirs(first_frame_dir, exist_ok=True)
        first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir,preprocess)
        
        if first_coeff_path is None:
            raise AttributeError("No face is detected")

        #audio2ceoff
        batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=None, still=still_mode) # longer audio?
        coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style)
        #coeff2video
        batch_size = 8
        data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, preprocess=preprocess)
        return_path = self.animate_from_coeff.generate(data, save_dir,  pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess)
        video_name = data['video_name']
        print(f'The generated video is named {video_name} in {save_dir}')

        if self.lazy_load:
            del self.preprocess_model
            del self.audio_to_coeff
            del self.animate_from_coeff

        torch.cuda.empty_cache()
        torch.cuda.synchronize()
        import gc; gc.collect()
        
        return return_path