Spaces:
Running
on
L4
Running
on
L4
from torch import nn | |
import torch.nn.functional as F | |
import torch | |
from src.facerender.sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d | |
from src.facerender.sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d | |
import torch.nn.utils.spectral_norm as spectral_norm | |
def kp2gaussian(kp, spatial_size, kp_variance): | |
""" | |
Transform a keypoint into gaussian like representation | |
""" | |
mean = kp['value'] | |
coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) | |
number_of_leading_dimensions = len(mean.shape) - 1 | |
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape | |
coordinate_grid = coordinate_grid.view(*shape) | |
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1) | |
coordinate_grid = coordinate_grid.repeat(*repeats) | |
# Preprocess kp shape | |
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3) | |
mean = mean.view(*shape) | |
mean_sub = (coordinate_grid - mean) | |
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) | |
return out | |
def make_coordinate_grid_2d(spatial_size, type): | |
""" | |
Create a meshgrid [-1,1] x [-1,1] of given spatial_size. | |
""" | |
h, w = spatial_size | |
x = torch.arange(w).type(type) | |
y = torch.arange(h).type(type) | |
x = (2 * (x / (w - 1)) - 1) | |
y = (2 * (y / (h - 1)) - 1) | |
yy = y.view(-1, 1).repeat(1, w) | |
xx = x.view(1, -1).repeat(h, 1) | |
meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) | |
return meshed | |
def make_coordinate_grid(spatial_size, type): | |
d, h, w = spatial_size | |
x = torch.arange(w).type(type) | |
y = torch.arange(h).type(type) | |
z = torch.arange(d).type(type) | |
x = (2 * (x / (w - 1)) - 1) | |
y = (2 * (y / (h - 1)) - 1) | |
z = (2 * (z / (d - 1)) - 1) | |
yy = y.view(1, -1, 1).repeat(d, 1, w) | |
xx = x.view(1, 1, -1).repeat(d, h, 1) | |
zz = z.view(-1, 1, 1).repeat(1, h, w) | |
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3) | |
return meshed | |
class ResBottleneck(nn.Module): | |
def __init__(self, in_features, stride): | |
super(ResBottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features//4, kernel_size=1) | |
self.conv2 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features//4, kernel_size=3, padding=1, stride=stride) | |
self.conv3 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features, kernel_size=1) | |
self.norm1 = BatchNorm2d(in_features//4, affine=True) | |
self.norm2 = BatchNorm2d(in_features//4, affine=True) | |
self.norm3 = BatchNorm2d(in_features, affine=True) | |
self.stride = stride | |
if self.stride != 1: | |
self.skip = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=1, stride=stride) | |
self.norm4 = BatchNorm2d(in_features, affine=True) | |
def forward(self, x): | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = F.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = F.relu(out) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
if self.stride != 1: | |
x = self.skip(x) | |
x = self.norm4(x) | |
out += x | |
out = F.relu(out) | |
return out | |
class ResBlock2d(nn.Module): | |
""" | |
Res block, preserve spatial resolution. | |
""" | |
def __init__(self, in_features, kernel_size, padding): | |
super(ResBlock2d, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
padding=padding) | |
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
padding=padding) | |
self.norm1 = BatchNorm2d(in_features, affine=True) | |
self.norm2 = BatchNorm2d(in_features, affine=True) | |
def forward(self, x): | |
out = self.norm1(x) | |
out = F.relu(out) | |
out = self.conv1(out) | |
out = self.norm2(out) | |
out = F.relu(out) | |
out = self.conv2(out) | |
out += x | |
return out | |
class ResBlock3d(nn.Module): | |
""" | |
Res block, preserve spatial resolution. | |
""" | |
def __init__(self, in_features, kernel_size, padding): | |
super(ResBlock3d, self).__init__() | |
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
padding=padding) | |
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
padding=padding) | |
self.norm1 = BatchNorm3d(in_features, affine=True) | |
self.norm2 = BatchNorm3d(in_features, affine=True) | |
def forward(self, x): | |
out = self.norm1(x) | |
out = F.relu(out) | |
out = self.conv1(out) | |
out = self.norm2(out) | |
out = F.relu(out) | |
out = self.conv2(out) | |
out += x | |
return out | |
class UpBlock2d(nn.Module): | |
""" | |
Upsampling block for use in decoder. | |
""" | |
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
super(UpBlock2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups) | |
self.norm = BatchNorm2d(out_features, affine=True) | |
def forward(self, x): | |
out = F.interpolate(x, scale_factor=2) | |
out = self.conv(out) | |
out = self.norm(out) | |
out = F.relu(out) | |
return out | |
class UpBlock3d(nn.Module): | |
""" | |
Upsampling block for use in decoder. | |
""" | |
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
super(UpBlock3d, self).__init__() | |
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups) | |
self.norm = BatchNorm3d(out_features, affine=True) | |
def forward(self, x): | |
# out = F.interpolate(x, scale_factor=(1, 2, 2), mode='trilinear') | |
out = F.interpolate(x, scale_factor=(1, 2, 2)) | |
out = self.conv(out) | |
out = self.norm(out) | |
out = F.relu(out) | |
return out | |
class DownBlock2d(nn.Module): | |
""" | |
Downsampling block for use in encoder. | |
""" | |
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
super(DownBlock2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups) | |
self.norm = BatchNorm2d(out_features, affine=True) | |
self.pool = nn.AvgPool2d(kernel_size=(2, 2)) | |
def forward(self, x): | |
out = self.conv(x) | |
out = self.norm(out) | |
out = F.relu(out) | |
out = self.pool(out) | |
return out | |
class DownBlock3d(nn.Module): | |
""" | |
Downsampling block for use in encoder. | |
""" | |
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
super(DownBlock3d, self).__init__() | |
''' | |
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups, stride=(1, 2, 2)) | |
''' | |
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups) | |
self.norm = BatchNorm3d(out_features, affine=True) | |
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2)) | |
def forward(self, x): | |
out = self.conv(x) | |
out = self.norm(out) | |
out = F.relu(out) | |
out = self.pool(out) | |
return out | |
class SameBlock2d(nn.Module): | |
""" | |
Simple block, preserve spatial resolution. | |
""" | |
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False): | |
super(SameBlock2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, | |
kernel_size=kernel_size, padding=padding, groups=groups) | |
self.norm = BatchNorm2d(out_features, affine=True) | |
if lrelu: | |
self.ac = nn.LeakyReLU() | |
else: | |
self.ac = nn.ReLU() | |
def forward(self, x): | |
out = self.conv(x) | |
out = self.norm(out) | |
out = self.ac(out) | |
return out | |
class Encoder(nn.Module): | |
""" | |
Hourglass Encoder | |
""" | |
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
super(Encoder, self).__init__() | |
down_blocks = [] | |
for i in range(num_blocks): | |
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), | |
min(max_features, block_expansion * (2 ** (i + 1))), | |
kernel_size=3, padding=1)) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
def forward(self, x): | |
outs = [x] | |
for down_block in self.down_blocks: | |
outs.append(down_block(outs[-1])) | |
return outs | |
class Decoder(nn.Module): | |
""" | |
Hourglass Decoder | |
""" | |
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
super(Decoder, self).__init__() | |
up_blocks = [] | |
for i in range(num_blocks)[::-1]: | |
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) | |
out_filters = min(max_features, block_expansion * (2 ** i)) | |
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) | |
self.up_blocks = nn.ModuleList(up_blocks) | |
# self.out_filters = block_expansion | |
self.out_filters = block_expansion + in_features | |
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1) | |
self.norm = BatchNorm3d(self.out_filters, affine=True) | |
def forward(self, x): | |
out = x.pop() | |
# for up_block in self.up_blocks[:-1]: | |
for up_block in self.up_blocks: | |
out = up_block(out) | |
skip = x.pop() | |
out = torch.cat([out, skip], dim=1) | |
# out = self.up_blocks[-1](out) | |
out = self.conv(out) | |
out = self.norm(out) | |
out = F.relu(out) | |
return out | |
class Hourglass(nn.Module): | |
""" | |
Hourglass architecture. | |
""" | |
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
super(Hourglass, self).__init__() | |
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) | |
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) | |
self.out_filters = self.decoder.out_filters | |
def forward(self, x): | |
return self.decoder(self.encoder(x)) | |
class KPHourglass(nn.Module): | |
""" | |
Hourglass architecture. | |
""" | |
def __init__(self, block_expansion, in_features, reshape_features, reshape_depth, num_blocks=3, max_features=256): | |
super(KPHourglass, self).__init__() | |
self.down_blocks = nn.Sequential() | |
for i in range(num_blocks): | |
self.down_blocks.add_module('down'+ str(i), DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), | |
min(max_features, block_expansion * (2 ** (i + 1))), | |
kernel_size=3, padding=1)) | |
in_filters = min(max_features, block_expansion * (2 ** num_blocks)) | |
self.conv = nn.Conv2d(in_channels=in_filters, out_channels=reshape_features, kernel_size=1) | |
self.up_blocks = nn.Sequential() | |
for i in range(num_blocks): | |
in_filters = min(max_features, block_expansion * (2 ** (num_blocks - i))) | |
out_filters = min(max_features, block_expansion * (2 ** (num_blocks - i - 1))) | |
self.up_blocks.add_module('up'+ str(i), UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) | |
self.reshape_depth = reshape_depth | |
self.out_filters = out_filters | |
def forward(self, x): | |
out = self.down_blocks(x) | |
out = self.conv(out) | |
bs, c, h, w = out.shape | |
out = out.view(bs, c//self.reshape_depth, self.reshape_depth, h, w) | |
out = self.up_blocks(out) | |
return out | |
class AntiAliasInterpolation2d(nn.Module): | |
""" | |
Band-limited downsampling, for better preservation of the input signal. | |
""" | |
def __init__(self, channels, scale): | |
super(AntiAliasInterpolation2d, self).__init__() | |
sigma = (1 / scale - 1) / 2 | |
kernel_size = 2 * round(sigma * 4) + 1 | |
self.ka = kernel_size // 2 | |
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka | |
kernel_size = [kernel_size, kernel_size] | |
sigma = [sigma, sigma] | |
# The gaussian kernel is the product of the | |
# gaussian function of each dimension. | |
kernel = 1 | |
meshgrids = torch.meshgrid( | |
[ | |
torch.arange(size, dtype=torch.float32) | |
for size in kernel_size | |
] | |
) | |
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
mean = (size - 1) / 2 | |
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) | |
# Make sure sum of values in gaussian kernel equals 1. | |
kernel = kernel / torch.sum(kernel) | |
# Reshape to depthwise convolutional weight | |
kernel = kernel.view(1, 1, *kernel.size()) | |
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
self.register_buffer('weight', kernel) | |
self.groups = channels | |
self.scale = scale | |
inv_scale = 1 / scale | |
self.int_inv_scale = int(inv_scale) | |
def forward(self, input): | |
if self.scale == 1.0: | |
return input | |
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) | |
out = F.conv2d(out, weight=self.weight, groups=self.groups) | |
out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale] | |
return out | |
class SPADE(nn.Module): | |
def __init__(self, norm_nc, label_nc): | |
super().__init__() | |
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) | |
nhidden = 128 | |
self.mlp_shared = nn.Sequential( | |
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), | |
nn.ReLU()) | |
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) | |
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) | |
def forward(self, x, segmap): | |
normalized = self.param_free_norm(x) | |
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') | |
actv = self.mlp_shared(segmap) | |
gamma = self.mlp_gamma(actv) | |
beta = self.mlp_beta(actv) | |
out = normalized * (1 + gamma) + beta | |
return out | |
class SPADEResnetBlock(nn.Module): | |
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1): | |
super().__init__() | |
# Attributes | |
self.learned_shortcut = (fin != fout) | |
fmiddle = min(fin, fout) | |
self.use_se = use_se | |
# create conv layers | |
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation) | |
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation) | |
if self.learned_shortcut: | |
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) | |
# apply spectral norm if specified | |
if 'spectral' in norm_G: | |
self.conv_0 = spectral_norm(self.conv_0) | |
self.conv_1 = spectral_norm(self.conv_1) | |
if self.learned_shortcut: | |
self.conv_s = spectral_norm(self.conv_s) | |
# define normalization layers | |
self.norm_0 = SPADE(fin, label_nc) | |
self.norm_1 = SPADE(fmiddle, label_nc) | |
if self.learned_shortcut: | |
self.norm_s = SPADE(fin, label_nc) | |
def forward(self, x, seg1): | |
x_s = self.shortcut(x, seg1) | |
dx = self.conv_0(self.actvn(self.norm_0(x, seg1))) | |
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1))) | |
out = x_s + dx | |
return out | |
def shortcut(self, x, seg1): | |
if self.learned_shortcut: | |
x_s = self.conv_s(self.norm_s(x, seg1)) | |
else: | |
x_s = x | |
return x_s | |
def actvn(self, x): | |
return F.leaky_relu(x, 2e-1) | |
class audio2image(nn.Module): | |
def __init__(self, generator, kp_extractor, he_estimator_video, he_estimator_audio, train_params): | |
super().__init__() | |
# Attributes | |
self.generator = generator | |
self.kp_extractor = kp_extractor | |
self.he_estimator_video = he_estimator_video | |
self.he_estimator_audio = he_estimator_audio | |
self.train_params = train_params | |
def headpose_pred_to_degree(self, pred): | |
device = pred.device | |
idx_tensor = [idx for idx in range(66)] | |
idx_tensor = torch.FloatTensor(idx_tensor).to(device) | |
pred = F.softmax(pred) | |
degree = torch.sum(pred*idx_tensor, 1) * 3 - 99 | |
return degree | |
def get_rotation_matrix(self, yaw, pitch, roll): | |
yaw = yaw / 180 * 3.14 | |
pitch = pitch / 180 * 3.14 | |
roll = roll / 180 * 3.14 | |
roll = roll.unsqueeze(1) | |
pitch = pitch.unsqueeze(1) | |
yaw = yaw.unsqueeze(1) | |
roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll), | |
torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll), | |
torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1) | |
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3) | |
pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch), | |
torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch), | |
-torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1) | |
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3) | |
yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw), | |
torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw), | |
torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1) | |
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3) | |
rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat) | |
return rot_mat | |
def keypoint_transformation(self, kp_canonical, he): | |
kp = kp_canonical['value'] # (bs, k, 3) | |
yaw, pitch, roll = he['yaw'], he['pitch'], he['roll'] | |
t, exp = he['t'], he['exp'] | |
yaw = self.headpose_pred_to_degree(yaw) | |
pitch = self.headpose_pred_to_degree(pitch) | |
roll = self.headpose_pred_to_degree(roll) | |
rot_mat = self.get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3) | |
# keypoint rotation | |
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp) | |
# keypoint translation | |
t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1) | |
kp_t = kp_rotated + t | |
# add expression deviation | |
exp = exp.view(exp.shape[0], -1, 3) | |
kp_transformed = kp_t + exp | |
return {'value': kp_transformed} | |
def forward(self, source_image, target_audio): | |
pose_source = self.he_estimator_video(source_image) | |
pose_generated = self.he_estimator_audio(target_audio) | |
kp_canonical = self.kp_extractor(source_image) | |
kp_source = self.keypoint_transformation(kp_canonical, pose_source) | |
kp_transformed_generated = self.keypoint_transformation(kp_canonical, pose_generated) | |
generated = self.generator(source_image, kp_source=kp_source, kp_driving=kp_transformed_generated) | |
return generated |