Spaces:
Running
on
L4
Running
on
L4
import numpy as np | |
import torch | |
import torch.nn as nn | |
from kornia.geometry import warp_affine | |
import torch.nn.functional as F | |
def resize_n_crop(image, M, dsize=112): | |
# image: (b, c, h, w) | |
# M : (b, 2, 3) | |
return warp_affine(image, M, dsize=(dsize, dsize), align_corners=True) | |
### perceptual level loss | |
class PerceptualLoss(nn.Module): | |
def __init__(self, recog_net, input_size=112): | |
super(PerceptualLoss, self).__init__() | |
self.recog_net = recog_net | |
self.preprocess = lambda x: 2 * x - 1 | |
self.input_size=input_size | |
def forward(imageA, imageB, M): | |
""" | |
1 - cosine distance | |
Parameters: | |
imageA --torch.tensor (B, 3, H, W), range (0, 1) , RGB order | |
imageB --same as imageA | |
""" | |
imageA = self.preprocess(resize_n_crop(imageA, M, self.input_size)) | |
imageB = self.preprocess(resize_n_crop(imageB, M, self.input_size)) | |
# freeze bn | |
self.recog_net.eval() | |
id_featureA = F.normalize(self.recog_net(imageA), dim=-1, p=2) | |
id_featureB = F.normalize(self.recog_net(imageB), dim=-1, p=2) | |
cosine_d = torch.sum(id_featureA * id_featureB, dim=-1) | |
# assert torch.sum((cosine_d > 1).float()) == 0 | |
return torch.sum(1 - cosine_d) / cosine_d.shape[0] | |
def perceptual_loss(id_featureA, id_featureB): | |
cosine_d = torch.sum(id_featureA * id_featureB, dim=-1) | |
# assert torch.sum((cosine_d > 1).float()) == 0 | |
return torch.sum(1 - cosine_d) / cosine_d.shape[0] | |
### image level loss | |
def photo_loss(imageA, imageB, mask, eps=1e-6): | |
""" | |
l2 norm (with sqrt, to ensure backward stabililty, use eps, otherwise Nan may occur) | |
Parameters: | |
imageA --torch.tensor (B, 3, H, W), range (0, 1), RGB order | |
imageB --same as imageA | |
""" | |
loss = torch.sqrt(eps + torch.sum((imageA - imageB) ** 2, dim=1, keepdims=True)) * mask | |
loss = torch.sum(loss) / torch.max(torch.sum(mask), torch.tensor(1.0).to(mask.device)) | |
return loss | |
def landmark_loss(predict_lm, gt_lm, weight=None): | |
""" | |
weighted mse loss | |
Parameters: | |
predict_lm --torch.tensor (B, 68, 2) | |
gt_lm --torch.tensor (B, 68, 2) | |
weight --numpy.array (1, 68) | |
""" | |
if not weight: | |
weight = np.ones([68]) | |
weight[28:31] = 20 | |
weight[-8:] = 20 | |
weight = np.expand_dims(weight, 0) | |
weight = torch.tensor(weight).to(predict_lm.device) | |
loss = torch.sum((predict_lm - gt_lm)**2, dim=-1) * weight | |
loss = torch.sum(loss) / (predict_lm.shape[0] * predict_lm.shape[1]) | |
return loss | |
### regulization | |
def reg_loss(coeffs_dict, opt=None): | |
""" | |
l2 norm without the sqrt, from yu's implementation (mse) | |
tf.nn.l2_loss https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss | |
Parameters: | |
coeffs_dict -- a dict of torch.tensors , keys: id, exp, tex, angle, gamma, trans | |
""" | |
# coefficient regularization to ensure plausible 3d faces | |
if opt: | |
w_id, w_exp, w_tex = opt.w_id, opt.w_exp, opt.w_tex | |
else: | |
w_id, w_exp, w_tex = 1, 1, 1, 1 | |
creg_loss = w_id * torch.sum(coeffs_dict['id'] ** 2) + \ | |
w_exp * torch.sum(coeffs_dict['exp'] ** 2) + \ | |
w_tex * torch.sum(coeffs_dict['tex'] ** 2) | |
creg_loss = creg_loss / coeffs_dict['id'].shape[0] | |
# gamma regularization to ensure a nearly-monochromatic light | |
gamma = coeffs_dict['gamma'].reshape([-1, 3, 9]) | |
gamma_mean = torch.mean(gamma, dim=1, keepdims=True) | |
gamma_loss = torch.mean((gamma - gamma_mean) ** 2) | |
return creg_loss, gamma_loss | |
def reflectance_loss(texture, mask): | |
""" | |
minimize texture variance (mse), albedo regularization to ensure an uniform skin albedo | |
Parameters: | |
texture --torch.tensor, (B, N, 3) | |
mask --torch.tensor, (N), 1 or 0 | |
""" | |
mask = mask.reshape([1, mask.shape[0], 1]) | |
texture_mean = torch.sum(mask * texture, dim=1, keepdims=True) / torch.sum(mask) | |
loss = torch.sum(((texture - texture_mean) * mask)**2) / (texture.shape[0] * torch.sum(mask)) | |
return loss | |